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Abstract

In this thesis we consider aspects related to the construction and phe-

nomenology of domain-wall brane models of a single, infinite, extra spatial

dimension. We discuss how gravity, gauge- and matter-fields become four-

dimensional at low energies due to the dynamical formation of a topological

defect known as a brane. These ideas are amongst the leading candidates

for extensions to the standard models of particle physics and cosmology.

We first examine a toy model where a pair of scalar fields, charged under

a U(1) ⊗ U(1) gauge symmetry, form a background domain-wall configura-

tion. This analysis demonstrates the general ideas of domain-wall formation

and stability, dimensional reduction and semi-confinement of gauge fields.

Gravity is incorporated into this toy model, in the form of a regularised

version of the Randall-Sundrum warped metric.

For the case of a single real scalar field, we show in detail how a domain

wall can be obtained, and determine its relationship to the fundamental

brane in the infinitely thin wall limit. Explicit expressions for the modes

of such a domain wall are found, as well as the modes associated with cou-

pled fermions and scalars. The symmetric modified Pöschl-Teller potential

arises in this context, and the analysis elucidates the reduction of a five-

dimensional field to a tower of four-dimensional modes.

Adding gravity to the model alters the spectrum of four-dimensional

modes trapped to the wall. What were once discrete modes become res-

onances within a continuum, and low-energy modes are coupled to these

continuum bulk modes. We show explicitly how this comes about, and use

a toy model to demonstrate that this coupling can be made small enough

to avoid experimental constraints.

The Dvali-Shifman mechanism for gauge field localisation is introduced,

and we use it, along with the previously discussed techniques for construct-

ing domain walls, to write down an SU(5) grand unified, single generation
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version of the standard model. Fermion mass relations and Higgs induced

proton decay are significantly improved from usual SU(5) models due to

an inherent split fermion set-up. An extension of the gauge group to E6 is

considered, naturally including the clash-of-symmetries mechanism, and it

is shown that the field content can be simplified.

Cosmological implications of domain-wall branes are investigated, and

we attempt to reproduce an effective four-dimensional Friedmann, Lemâıtre,

Robertson-Walker metric for brane-localised matter. We find that for a do-

main wall of finite thickness it is not possible to define a common spacetime

for all localised species of matter. As a consequence, different species ex-

perience a different effective four-dimensional scale factor, an unusual effect

that is suppressed when the domain wall is made sufficiently thin.

We conclude that domain-wall brane models of an infinite extra dimen-

sion are viable extensions of the standard models of particle physics and

cosmology. These models provide a rich set of phenomenology, and allow

new ways to tackle existing theoretical problems.
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Chapter 1

Introduction

Exploiting the philosophy of special relativity — that space and time

should be considered part of the single entity known as spacetime —

was on Gunnar Nordström’s agenda when, in 1912, he attempted to write

down a relativistic generalisation of Newton’s law of gravitation [1]. The

idea was simple: Newtonian gravity is modelled by the Poisson equation

∇2φ = 4πGρ, and a relativistic version could be found by replacing the

Laplace operator ∇2 with the d’Alembert operator � = ∂2
t −∇2. This gives

the Lorentz invariant equation

�φ = −4πGρ . (1.1)

In such a model, the gravitational field is described by the potential φ, and

so this constitutes a scalar theory of gravity. The strength of the force

is dictated by Newton’s constant G, and ρ describes the distribution of

matter density. This is not a good theory of relativistic gravity. Among

its many problems is its linearity: it does not capture the self interaction

of the gravitational field. Nordström went on to improve his theory, but

it remained a scalar theory of gravity,1 and it was Albert Einstein who, in

1916, wrote down the correct tensor formulation known as general relativity

(GR).

In 1914, during the final stages of the development of GR by Einstein,

Nordström was already thinking about the idea which dwells in the mind of

1Nordström’s next attempt, in 1913, was φ�φ = −4πGT , where T is the trace of the
matter stress-energy tensor. A year later, Einstein and Fokker noticed that this improved
scalar theory could be described by the metric gµν = φ2ηµν , and the associated equation
of motion relates the Ricci scalar R to the stress-energy: R = 24πGT .

1



2 Chapter 1. Introduction

almost every theoretical physicist: unification. Nordström was captivated by

the elegance of Maxwell’s equations and their formulation in the framework

of special relativity. Here, the electric- and magnetic-field three-vectors,
~E and ~B respectively, were combined into a six component anti-symmetric

tensor. In modern notation we would write this tensor as

Fµν = ∂µAν − ∂νAµ , (1.2)

where µ and ν index (t, x, y, z) (also labelled (0,1,2,3) respectively) and Aµ

is the electromagnetic vector potential. The symbol ∂µ denotes a derivative

with respect to the coordinate xµ. Nordström next assumed that equa-

tion (1.1) was the correct description of gravity, and so at each point in

space the gravitational field is described by a four-vector, corresponding to

the time and three-spatial derivatives of φ. Now it seemed natural to Nord-

ström to combine the six components of electromagnetism with the four

components of his scalar gravity theory, and, on purely theoretical grounds,

he wrote down a ten-component analogue of electromagnetism [2, 3, 4].

The key insight that Nordström had was the following: a ten component

anti-symmetric tensor arises naturally from the anti-symmetric derivatives

of a five-vector, so he upgraded the four-vector potential Aµ to the five-

vector AM . Here, the index M runs over the original four coordinates of

our universe, in addition to a new, fifth coordinate w; a coordinate which

Nordström interpreted as an extra spatial dimension. The fifth component

of AM then plays the role of the scalar gravity potential, Aw = −φ/
√

4πG,

and the fifth component of the electromagnetic source vector JM is pro-

portional to the matter density, Jw = ρ
√

4πG/µ0. This five-dimensional

theory reproduces electromagnetism and scalar gravity on one condition:

the w derivative of all five of the components of AM must vanish. Nord-

ström interpreted this mathematical fact as the physical requirement that

fields in our universe must be perpendicular to w, and thus the extra di-

mension is distinguished in some way from the usual four. In his conclusion

he writes [2]:

It is shown that a unifying treatment of the electromagnetic

and gravitational fields is possible if one considers the four di-

mensional spacetime-world to be a surface in a five dimensional

world.
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Today, 95 years later, although they take on a more sophisticated form,

we are still concerned with the ideas of unification, extra dimensions and

the modern name given to a four-dimensional surface in a higher dimen-

sional spacetime: a brane world. All these topics are dealt with in depth

throughout the course of this thesis, and many of Nordström’s pioneering

ideas are present. The central idea that we explore is that of a domain-wall

brane. Here, the supposed brane world on which our universe resides forms

dynamically as a junction that divides an infinite, or at least cosmologically

sized, five-dimensional bulk into two pieces, or two domains. Such domain-

wall theories are among many of the modern ways to model the hypothetical

existence of an extra spatial dimension. It is intriguing to see that such a

hypothesis can be made realistic, and that future experiments may discover

these hidden extra dimensions.

For the remainder of this chapter we shall discuss the relevant ideas

and theories that have developed, in a more or less chronological order,

since Nordström’s attempt at a unified brane-world theory. Any modern

theory of fundamental physics is built upon these tried and tested theories

of the past, and domain-wall brane models are no exception. At the end

of this introductory chapter we give a detailed overview of the structure

of the rest of the thesis, and, in the chapters that follow, our model is

presented in detail. We start with the basics of domain-wall brane formation,

stability and the way in which such branes can trap matter and force fields,

including gravity. We write down a version of the standard model of particle

physics confined to a domain wall, and discuss ideas about grand unification.

Cosmological aspects are also worked through in detail. By the end of the

thesis we will have developed a working version of a domain-wall model of

an infinite extra dimension.

1.1 Kaluza and Klein

Although Nordström’s idea of unifying gravity with electromagnetism was

lost amidst the great success of GR, it was re-invented, it seems indepen-

dently, by Theodor Kaluza in 1921 [5]. Struck by the similarity of the

field equations of electromagnetism and GR, Kaluza guessed that the field

strength tensor of the former, Fµν , was related in some way to the lowered
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connection coefficients of the latter,2

Γµνλ = gµσΓ
σ
νλ = 1

2(∂λgµν + ∂νgµλ − ∂µgνλ) . (1.3)

Here gµν is the tensor metric of GR and describes the curvature of spacetime,

and the resulting force due to gravity, in a similar way that Aµ describes the

electromagnetic force. So that there would be enough degrees of freedom

for both Aµ and gµν to originate from a common object, Kaluza introduced,

as Nordström did, the fifth dimension. Recall that Nordström upgraded

the vector potential Aµ to AM and identified gravity as the extra scalar

component associated with the extra dimension. Kaluza’s theory worked

the other way around: he extended the metric of GR to a fifteen component

tensor, gMN , with the intention of allocating Aµ to the new positions of this

five-dimensional metric.

Because there was no evidence of such an extra spatial dimension, Kaluza

assumed the “cylinder condition”: that extra dimensional derivatives of all

quantities vanished, or, at the least, were higher order and very small. In

light of this condition, Kaluza was able to write Γµν5 = 1
2(∂νgµ5 − ∂µgν5)

and so made the identification Aµ = 1
2αgµ5. Here, the constant α is chosen

to get the correct coupling between gravity and electromagnetism. In this

way, the four-dimensional gravitational metric gµν and the electromagnetic

potential Aµ are both embedded in the five-dimensional metric gMN . These

objects have ten, four and fifteen independent components, respectively, so

there remains an extra scalar degree of freedom: ψ = 1
2g55. This field is now

known as the dilaton, and plays an important role in string theory, but, at

the time, Kaluza did not understand its significance and did not attempt to

ascribe it a physical meaning.3

The crucial part of Kaluza’s work was his demonstration that the dynam-

ics of his five-dimensional theory are equivalent to the combined dynamics

of GR and electromagnetism. In the linear approximation, i.e. that the five-

dimensional metric is nearly Minkowski space, Kaluza was able to prove this

dynamical equivalence: he derived Maxwell’s and Einstein’s equations along

with an equation of motion for the scalar field ψ. This is Kaluza’s theory,

and his main interest in it lay in the formality of the mathematics. He made

2In this thesis, repeated indices are to be summed over.
3We now know that for consistency of the five-dimensional dynamics, the dilaton field

cannot be set to zero if the electromagnetic field strength is to be non-zero.
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no specific geometric interpretation of the extra dimension, although he did

correctly mention that electric charge is to be understood as momentum in

this extra dimension. One of Kaluza’s concerns was that his theory did not

have anything to say about quantum mechanics, which was under intense

development around this time. These two issues, of a physical interpre-

tation of the extra dimension and of quantum mechanics, were on Oskar

Klein’s agenda, and would also receive much attention years later during

the development of string theory.

Independently to Kaluza, in 1924, Oskar Klein began thinking seriously

about a fifth dimension.4 As with Nordström and Kaluza, Klein was also

captured by the elegant similarity of the equations of gravity and electromag-

netism, and he reproduced Kaluza’s theory, first in the linear approximation

and later for the general non-linear case. Klein also had the idea of using an

extra dimension in connection with wave (quantum) mechanics, and thought

that quantisation may arise from periodicity of the extra dimension. Klein

put together a manuscript describing these ideas of unification, an extra

dimension and quantum mechanics, and showed it to Wolfgang Pauli, who

then informed him of Kaluza’s previous work. Klein was disappointed that

his ideas were not original, but published his work anyway [8], as he himself

says: “the paper I then wrote in a spirit of resignation” [9]. Although not

the first to unify electromagnetism and GR, Klein’s paper did demonstrate

that Kaluza’s theory worked correctly in the general non-linear regime, and,

importantly, gave a physical realisation of the extra dimension.

Klein was imagining that the extra dimension was real and was closed

upon itself to form a tiny circle, an image that came from his conviction that

quantum mechanics could be derived from the periodicity of this dimension.

In particular, Klein related the strength of the electric charge to the mo-

mentum in the extra dimension, and hypothesised that this momentum was

quantised according to the de Broglie wavelengths that could fit around the

circular extra dimension. The longest allowed wavelength, being the size

of the extra dimension, would correspond to the smallest allowed electric

charge: the charge on an electron. Using this relation, Klein derived the

size of the extra dimension to be l = 0.8 × 10−30 cm (see his paper [10]).

Klein commented that, because this extra dimension is so small, the physics

4For a more detailed historical overview of Klein’s contributions to physics, see Chapter
7 of [6], and also [7] for a personal account by Klein himself.
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that has been observed so far is an averaged version of true five-dimensional

physics. The acceptance of the extra dimension as something real, a predic-

tion of its size, and the idea of averaging out the five-dimensional behaviour

of physical objects are the main contributions of Klein to what is now known

collectively as Kaluza-Klein theory.

As evident from the independent work of Nordström, Kaluza and Klein,

extra dimensions have their roots in the unification of electromagnetism and

gravity. But, as experiments were showing, there were other fundamental

phenomena in nature, aside from these two forces, that required an expla-

nation. After decades of research — of which an overview is given in the

next section — the standard model of particle physics would emerge as the

accepted model of the sub-atomic world. Focus would then return to extra

dimensions, and, as we shall discuss, they could be used as a tool for more

than just unification.

1.2 The standard model of particle physics

In 1926, Erwin Schrödinger wrote down his famous equation [11] describing

the evolution of the wave-function of a quantum state. This wave-function

was subsequently interpreted by Max Born as the probability amplitude,

which, after taking the modulus squared, yields a probability density. Devel-

opment of this quantum mechanics continued for over twenty years, spurred

by its great success in explaining atomic properties and related phenomena.

Among the driving features of this program were the incorporation of spe-

cial relativity, and the description of a particle as a quantum excitation of

a field. This led to the construction of the language of quantum field the-

ory (QFT) [12, 13], which is the basis of almost all modern particle physics

models, and is our best way of modelling the quantum nature of the world.

Using this language, we will now proceed to explain the main ingredients of

the standard model of particle physics, give an outline of this model, discuss

some of its shortcomings, and also take a look at one of the more promising

avenues beyond it.

1.2.1 Gauge theories

The expression of Maxwell’s equations of electromagnetism in the new lan-

guage of QFT was worked out in the 1940s by Richard Feynman, Freeman
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Dyson, Julian Schwinger and Sin-Itiro Tomonaga. This theory is known as

quantum electrodynamics (QED) and it is a beautifully precise description,

including all known quantum behaviour, of not only the electromagnetic

field, but also the way in which electrons and positrons (or any charged

particle) interact with the field and with each other. This theory can be

written as the action

SQED =

∫

d4x

[

−1

4
FµνFµν + ψ (iγµ∂µ − eγµAµ −m)ψ

]

, (1.4)

where Aµ is, as previously, the electromagnetic field with Fµν defined by

equation (1.2), Fµν = ηµσηνλFσλ, and ηαβ = diag(+1,−1,−1,−1) is the

Minkowski metric. The electron and positron are described by the field

ψ(xµ) which transforms as a four-component Dirac spinor whose adjoint is

ψ = ψ†γ0, and the associated γµ are defined by the relation {γµ, γν} ≡
γµγν + γνγµ = 2ηµν . The constant e is the charge of the electron and

describes the strength with which it couples to the electromagnetic field,

and m is the mass of the electron. Of course, the action of QED can only

be understood in the full context of QFT, where there exists a definite

prescription for quantisation of the fields along with a way to calculate

physical observables that can be connected with experiments in the real

world.

In modern terminology, QED is a U(1) Abelian gauge theory; the ac-

tion (1.4) is invariant, or symmetric, under local U(1) phase transformations.

To understand this, first consider the more restricted symmetry of global

phase transformations, where ψ → ψ′ = eiαψ and α is an arbitrary real con-

stant. Due to the pairing of ψ and ψ in all the terms in equation (1.4), such

a transformation leaves this action unchanged. Thus, the model of QED

predicts equivalent physics, irrespective of the choice we make for the global

phase of ψ. Notice that under such a global transformation, the gauge field

Aµ plays no role. This gauge field is present in the model because the U(1)

of QED is actually a local symmetry: the choice we make for the phase

at one point in spacetime does not restrict our choice at any other point,

and so α is a function of spacetime, α = α(xµ). Although this may seem

to provide a large amount of arbitrariness for the definition of the phase,

the model of QED makes physical sense — the action remains invariant —

precisely because the gauge field undergoes the simultaneous transformation
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Aµ → A′
µ = Aµ+ 1

e∂µα. The presence of Aµ, and its associated gauge trans-

formation, is thus necessary to ensure local U(1) gauge invariance. This idea

is known as a gauge symmetry and is one of the most important construc-

tions in modern physics; we will revisit the idea frequently in this thesis.

The theory of QED marked the beginning of our modern understanding

of the sub-atomic world and provided, at the time, the starting point for

a more complete theory. Early modifications included the addition of the

proton and the description of beta decay, the process where a proton decays

into a neutron, emitting an electron and anti-neutrino. Around the early

1930s, the details of this process were becoming clear, and Enrico Fermi

wrote down his model of beta decay in 1934. The essence of Fermi’s model

was a single interaction term coupling the proton, neutron, electron and

neutrino. The term contained a constant factor GF which described the

strength of the force, and was determined from experiment to be quite small

leading to the eventual naming of this force as the weak force. Due to the

dimensionality of GF , Fermi’s model was not renormalisable5 and so did

not fit well in language of QFT, where, at the time, renormalisability was

considered a requirement. Thus, while Fermi’s interaction term described

the weak force with good precision at the available energies, the model was

lacking a more complete understanding.

There was also the emerging problem of the strong force, named for its

role in holding protons and neutrons together to form an atomic nucleus.

Due to its strength, the nature of this force remained hidden for decades, and

was only partially manifest by a shorted lived particle known as the pion.6

The pion acts between protons and neutrons similar to the way a photon acts

between oppositely charged particles: it mediates an attractive force. Chen

Ning Yang and Robert Mills tried to account for such a force in 1954 [14],

after noticing that, if one ignored electric charge, the proton and neutron

seemed indistinguishable, a property known as isospin symmetry. They

hypothesised that the interchange of these two nucleons was a symmetry of

nature (ignoring electric charge), just as the phase transformation of QED

is a symmetry. They strengthened this analogy with QED by assuming

5We will not provide an overview or any details of the renormalisation process in this
thesis.

6The existence of a pion-like particle was predicted in 1935 by Hideki Yukawa, and
later observed in 1947. In the realm of the strong force, the pion is a relatively light
particle, due to the up and down quarks having small masses.



1.2. The standard model of particle physics 9

that the isospin interchange symmetry was a local symmetry — that what

one defines as the proton or neutron at one point does not determine the

definition at another point — and introduced a new gauge field, in analogy

to the photon, to consistently counteract such an interchange.

In making such a bold hypothesis regarding local isospin symmetry, Yang

and Mills invented non-Abelian gauge theory and wrote down an SU(2) ver-

sion of QED. As a theory of the strong interaction, their model was flawed,

as the gauge bosons (the force carriers) could not be identified with pions

since their spins did not match. Furthermore, the bosons seemed to be

massless and therefore ruled out due to lack of observation in any experi-

ment. For these reasons, the theory was initially dismissed, but, after the

discovery of the Higgs mechanism and asymptotic freedom, would later find

application to both the weak and strong forces. Now known as Yang-Mills

theory, it is the generalisation of QED to more complicated gauge groups,

and has paved the way for using these other groups in model building, as

will be evident in this thesis.

1.2.2 Symmetry breaking and the electroweak force

More experimental data on the strong force was needed before any real

progress could occur beyond the idea of Yang and Mills. In the meantime,

the weak force was proving to be a more tractable problem, and, in 1960,

Sheldon Glashow managed to combine this force with the electromagnetic

force [15], by assuming that the weak force is mediated by massive unstable

gauge bosons. In this context the Fermi interaction is split into two sepa-

rate, simpler interactions, mediated by a massive gauge boson. At the time

it seemed as though the weak force experimental data could be explained

with two such charged gauge bosons, but Glashow’s theory required a third

neutral gauge boson for theoretical reasons. In his model, these three gauge

bosons were unified with the photon, but the issue of such different masses

between the four remained unresolved, and the model was unable to give

experimental predictions for these masses or for the couplings. In 1964,

Abdus Salam and John Ward pushed further this idea of unifying the elec-

tromagnetic and weak forces [16], but a more complete theory would require

Goldstone’s theorem and the Higgs mechanism.

In 1961, Jeffrey Goldstone made a conjecture [17]: if a continuous sym-

metry is broken by the vacuum, a massless spin zero particle must exist.
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While attempting to construct a model of the strong interaction, and ac-

count for the light pion, Yoichiro Nambu (and Giovanni Jona-Lasinio) also

came across such massless particles arising in the context of a broken sym-

metry [18, 19]. A proof of the conjecture was provided in 1962 by Goldstone,

Salam and Steven Weinberg [20], and the theory is now known as Goldstone’s

theorem. In the theorem, the continuous symmetry is a global symmetry;

for example a global U(1), where the phase is changed at all points in space-

time by the same angle. A symmetry can be broken in two distinct ways:

either explicitly or dynamically. Explicit symmetry breaking occurs when

a model would have a symmetry if certain terms, or interactions, were ab-

sent. These terms are said to explicitly break the symmetry. For the U(1)

example, this type of breaking would occur if one of the terms in the action

depended upon the phase, which can be realised, for example, by not pair-

ing a field with its complex conjugate. Explicitly broken symmetries are a

useful concept when the symmetry breaking term is not a dominant term;

there may be an energy regime where certain terms in a model dominate

and together contain a symmetry.

Dynamical symmetry breaking (also known as spontaneous symmetry

breaking) is a more sophisticated phenomenon than its explicit counterpart,

and occurs when a model contains a true symmetry, but the solutions to

the equations of motion do not. Such symmetry breaking is abundant; for

example, most theories possess translation invariance, or a translation sym-

metry, which can be dynamically broken simply by creating a particle at

a particular location. Such a particle, which is just one of many solutions

to the equations of motion of the theory, sets a special spot in space, and

renders this instance of the theory translation non-invariant. But a cru-

cial feature of such a particle is that, if it has non-zero momentum, it will

change its location at no energy cost. This brings us to the central idea of

Goldstone’s theorem: if a symmetry is dynamically broken by the vacuum

solution, for example because the vacuum chooses a particular phase, then

a massless particle, knows as a Nambu-Goldstone boson, exists to account

for the fact that the original theory is phase invariant. In other words, the

vacuum wants to be at a particular phase, yet the theory dictates that the

vacuum cannot distinguish among phases, so a Nambu-Goldstone boson is

induced to transform the vacuum from one phase to another at no energy

cost. The general term used to refer to the phase, or state, that the vacuum
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is in is the vacuum expectation value, or VEV. Symmetry breaking plays

a very important role in this thesis, where domain-wall brane solutions dy-

namically break the translation invariance of the models we consider. In

some cases a domain wall dynamically breaks a gauge symmetry, which, as

we now discuss, has very interesting consequences.

Between 1964 and 1965 Peter Higgs worked out an interesting and ex-

tremely useful loophole in Goldstone’s theorem. He demonstrated [21] that

the proof of Goldstone’s theorem fails if the broken vacuum is gauged; that

is, if the vacuum dynamically breaks a local gauge symmetry. Further-

more, Higgs later showed [22] that some of the gauge fields associated with

the dynamically broken symmetry acquire a mass. The massless Nambu-

Goldstone bosons of the broken symmetry are no longer present because

their degrees of freedom are “eaten” by the gauge fields, whose mass is a

result of their inherited longitudinal degree of freedom.This is an important

discovery: previously, the only way to construct a massive gauge field was

to explicitly break the symmetry in the model from the outset (recall the

problems Glashow had with his model of the weak interaction). Higgs was

well aware of the applications of his result, and suggested that this may be

a way to get massive vector bosons for the weak interaction, while keeping

the photon massless. In a subsequent paper [23], Higgs detailed the calcu-

lation of what is now called the Higgs mechanism, and which has become

a major tool in particle physics model building. The name “Higgs field” is

also often used to refer to a scalar field which is responsible for breaking a

gauge symmetry in a model. As mentioned previously, some of the domain

walls in this thesis are designed to play the role of a Higgs field.

With the establishment of the Higgs mechanism, Glashow’s preliminary

model of electromagnetic and weak interactions could be completed. It is

now called the electroweak model, and the leptonic sector of this model,

containing the electron and neutrino, was written down in 1967 by Wein-

berg [24], and also independently by Salam [25]. The weak force is chiral

and biases interactions towards the left-handed projection of fermions. In

our notation we define γ5 = iγ0γ1γ2γ3 and the left-handed projection of ψ is

ψL = 1
2(1−γ5)ψ, while the right-handed projection is ψR = 1

2(1+γ5)ψ. The

electroweak theory has two local gauge symmetries: U(1)Y is the Abelian hy-

percharge symmetry with associated gauge field Bµ, and SU(2)L is the non-

Abelian left-handed symmetry with the set of three fields W a
µ (a = 1, 2, 3)
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in the adjoint representation.7 The electron field e, the electron neutrino νe

and the Higgs doublet Φ make up the rest of the theory. The left-handed

projections of the fermions are put in a doublet representation of SU(2)L,

so we have

lL =

(

(νe)L

eL

)

and Φ =

(

φ0

φ−

)

, (1.5)

where φ0 and φ− are the complex scalar field components of the Higgs field.

In slightly modified notation, Weinberg’s model of leptons and the elec-

troweak interaction is given by the action

SEW =

∫

d4x
[

− 1

4
BµνBµν −

1

4
WaµνWa

µν

+ lLγ
µ(i∂µ −

g

2
Bµ +

g′

2
W a
µσ

a)lL + eRγ
µ(i∂µ − gBµ)eR

+ |(∂µ +
g

2
Bµ +

g′

2
W a
µσ

a)Φ|2 − λ
(

|Φ|2 − v2
)2

+Ge(lLΦeR + eRΦ†lL)
]

,

(1.6)

where the gauge field tensors are Bµν = ∂µBν − ∂νBµ and Wa
µν = ∂µW

a
ν −

∂νW
a
µ + g′fabcW b

µW
c
ν , the structure constants, fabc, of SU(2)L are defined

by [σa, σb] ≡ σaσb − σbσa = 2ifabcσc, and σa are the Pauli matrices.8 The

parameters g and g′ correspond to the U(1)Y and SU(2)L coupling respec-

tively. The Higgs potential, which determines the vacuum state and induced

dynamical symmetry breaking, is controlled by λ and v. The final parameter

is Ge, whose size dictates the mass of the electron. The different signs and

factors of 1
2 multiplying g are a consequence of the different hypercharges

of each field, which are: Y (lL) = −1, Y (eR) = −2, Y (Φ) = 1. Weinberg

showed that this model contained electromagnetism, with a massless pho-

ton, as well as a plausible theory of the weak interaction mediated by the

heavy gauge bosons W+
µ , W−

µ and Zµ.
9 Bounds on the masses of the W

and Z particles were given, along with predictions for the coupling of the

7In the current context, a representation of a group, or of a symmetry, is a composite
object whose elements are individual fields which rotate amongst themselves in a way that
exemplifies, or represents, the symmetry at hand.

8See Section A.1 for the explicit forms of the Pauli matrices.
9The photon is the linear combination Aµ = cos(θW )Bµ + sin(θW )W 3

µ and the heavy
weak gauge bosons are defined by Zµ = − sin(θW )Bµ + cos(θW )W 3

µ and W±
µ = (W 1

µ ±
iW 2

µ)/
√

2. The angle θW is called the Weinberg angle, or weak mixing angle.
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fermions to Z. This model accounts for a significant part of the standard

model of particle physics; the missing ingredients are the hadrons and the

strong force.

1.2.3 Quarks, gluons and strings

Aside from the electroweak force, experiments designed to elucidate the na-

ture of the strong force, and the internal structure of hadrons, were yielding

almost too much data. A huge spectrum of strongly interacting particles

were being seen, the pion being the just the tip of the iceberg, and there

was the growing feeling that these particles were not fundamental. It was

believed that the particle spectrum was the consequence of an underlying

dynamics, of which there were two competing theories. One theory was the

eightfold way, introduced in 1961 by Murray Gell-Mann [26]. The hadrons

seemed to divide into two main groups called the mesons and the baryons,

and the eightfold way was a combinatorial mechanism which Gell-Mann

used to further classify individual mesons and baryons. In 1964, he intro-

duced [27] the concept of a quark with fractional electric charge, and showed

how combinations of three distinct quarks could reproduce the combina-

torics of the eightfold way and account for the observed particle spectrum.

The two main problems with this model were that quarks, or fractionally

charged particles, were not seen in nature, and the way in which quarks were

bound together to form hadrons was not understood. Further work related

to quarks, their formation of composite entities, and the so-called “colour”

SU(3) symmetry was performed by Oscar Greenberg [28], and Moo-Young

Han and Nambu [29].

The other model of the strong force was developed between 1968 and

1974. It was called the dual resonance model [30], and was instigated by

Gabriele Veneziano who found an elegant way of mathematically expressing

scattering amplitudes of strongly interacting particles. QFT can be used to

describes theories with local, point-like interactions, and seemed to work well

for QED and the electroweak force, but not for the strong force. It seemed

that the strong force, and the plethora of strongly interacting particles,

needed a different type of internal description — a non-local description —

and the dual resonance model provided this, as it could be interpreted as

a theory of vibrating strings. Instead of modelling a hadron (or any other

particle) as a point-like object, the dual resonance model, later referred to
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as string theory, modelled different particles by different vibrations of the

same underlying string entity.

There were two distinct dual resonance models with different spectrums

for the vibrations of the string.10 The “Veneziano model” contained only

bosonic vibration states, so could not model any of the hadrons (which are

fermions), and also contained unphysical tachyonic states. Furthermore,

this model was only consistent when spacetime had twenty-six dimensions,

one being a time-like dimension and the other twenty-five being space-like.

The second model, the so-called “dual pion model”, had both bosonic and

fermionic states; the accommodation of fermions making it more promising

than the Veneziano model. Under certain conditions, it was also possible

to eliminate tachyons by having an equal number of fermions and bosons

at each given mass of the string vibration spectrum. Such a pairing is now

known as supersymmetry, a global symmetry relating fermions and bosons,

which when made a local symmetry yields supergravity.11 Successors of

the dual pion model are known as superstring theories and, for consistency,

these theories need to be formulated in a ten-dimensional spacetime. For a

model of the strong force these necessary extra dimensions were seen as a

downfall, but they would later play a significant role in string theory when it

became a candidate for a fundamental theory of nature, and the unwanted

dimensions would be compactified away [33] as in the original proposal of

Klein. As we discuss later, the discovery that branes could reside in these

extra dimensions of string theory lead to a lot of the research which has

motivated the topic of this thesis.

Returning to the traditional idea of utilising QFT and gauge fields to

model the strong force, it was found that non-Abelian gauge theories pos-

sessed a special feature which rendered the original idea of Yang and Mills —

to use a gauge field to mediate the strong force — much more plausible. This

special feature is called asymptotic freedom and was discovered in 1973 by

David Gross and Frank Wilczek [34], and by David Politzer [35]. They

demonstrated that non-Abelian Yang-Mills gauge theories have vastly dif-

ferent properties to Abelian versions of the theory, and could be the correct

way of describing the strong force. Asymptotic freedom refers to the phe-

10For a good technical overview see the report by Schwarz [31] and also Green, Schwarz
and Witten [32] for an introduction to string theory.

11We do not make use of any technical details of supersymmetry in this thesis.
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nomenon whereby the force due to a non-Abelian gauge field gets weaker for

closer distances, and the force ultimately vanishes for asymptotically small

distances. This is conceptually the opposite to an Abelian force, where the

strength weakens at large distances. Two or more particles held together

by a non-Abelian force are very difficult to separate, and such a composite

entity had properties (such a Bjorken scaling) which mimicked the hadrons.

Building on the idea of asymptotic freedom, and on the previous theories

of quarks and colour symmetry, Harald Fritzsch, Gell-Mann and Heinrich

Leutwyler described a model [36] where the strong force is a manifestation

of the non-Abelian group SU(3). Unlike the weak force and the broken

SU(2)L symmetry, the local SU(3) gauge symmetry of the strong force is

exact, and “phase rotations” of this group correspond to interchanging the

three colours of the strong force. There are eight massless gauge bosons

associated with SU(3); they are called “gluons” and come in combinations

of the three colours. Each quark that is included in the theory will come

in a triple of the three colours. The success of this model, now known as

quantum chromodynamics (QCD), pushed aside the dual resonance model

and is our current theory of the strong interaction.

1.2.4 The standard model

All of these pieces of work — QFT, QED, Yang-Mills theory, Goldstone’s

theorem and the Higgs mechanism, the electroweak model, asymptotic free-

dom, quarks and QCD — were shedding light on exactly how nature ticked

underneath, and were ready to be put together in a complete model of sub-

atomic, high-energy particle physics. All that was left to determine were

the different types of particles that exist in nature. As we have seen from

the electroweak model, the leptons consist of the electron and the neutrino,

which do not interact with the strong force (they do not have colour). The

coloured fermions are the quarks, of which there are the up quark u and

the down quark d. These four fermions — e, νe, u and d — together make

up the first generation of particles. There are a total of three generations,

each subsequent generation being a copy of the previous, with the only dis-

tinguishing feature a larger mass. The second generation, listed here in the

same order as the first generation, contains the muon, muon neutrino, charm

quark and strange quark. The third generation, in order, contains the tau,
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tau neutrino, top quark and bottom quark.12

The model that is the culmination of these decades of research is called

the standard model of particle physics (SM). It is a unified description of the

electromagnetic, weak and strong forces, and the dynamics and interactions

of the three generations of fermions. It is a theory that has provided precise

and correct predictions for the past 35 years or so of observations of low and

high energy experiments. In the language of QFT and gauge symmetries,

the gauge group of the standard model is

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.7)

where SU(3)C is the group corresponding to the coloured strong force and

SU(2)L ⊗ U(1)Y is the electroweak force. The first generation of fermions

consists of the following fields and their associated quantum numbers:

qL =

(

uL

dL

)

∼ (3,2)1/3 uR ∼ (3,1)4/3 dR ∼ (3,1)−2/3

lL ∼ (1,2)−1 νR ∼ (1,1)0 eR ∼ (1,1)−2

(1.8)

The Higgs field, which gives mass to the fermions and the heavy weak gauge

bosons, is

Φ ∼ (1,2)1 , (1.9)

and the symmetry breaking pattern to the electromagnetic group U(1)EM is

SU(3)C ⊗ SU(2)L ⊗ U(1)Y −→ SU(3)C ⊗ U(1)EM . (1.10)

The lepton doublet lL and Higgs doublet Φ have a composition as given

by the equations in (1.5). The notation for the quantum numbers in (1.8)

and (1.9) is the SU(3)C representation followed by the SU(2)L representation

in parenthesis, and then the U(1)Y hypercharge Y as subscript. The electric

charge Q corresponding to the group U(1)EM is related to the U(1)Y hyper-

charge Y and the SU(2)L isospin charge I3 (which is 0 for a singlet and ±1
2

for the upper/lower component of a doublet) by the Gell-Mann-Nishijima

relation Q = I3 + 1
2Y . The second and third generations of fermions have

12The history of the experimental observation of the fermions is just as interesting as
the history of the theoretical discoveries, but will not be discussed here. We will mention
though that the last fermion to be discovered was the top quark in 1995.
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equivalent quantum numbers to those of the first.

The action of the standard model is a more complete version of the

electroweak action (1.6). We will not give the explicit form, but instead just

mention that, in addition to the electroweak terms, there are kinetic terms

for the gluon gauge fields and for the quarks as well as interaction terms

between the quarks and the Higgs. In fact, the prescription for constructing

the action is to write down all the renormalisable terms that can be made

from the given particle content and which are consistent with the given

symmetries. When incorporating three generations, a large number of such

terms must be written down, but it is nevertheless a straightforward task. In

this case, the notation is simplified by putting the three generations of each

species in a three component vector and writing the Higgs-fermion couplings,

such as Ge, as 3 × 3 matrices. The analysis that then follows leads to the

Cabibbo-Kobayashi-Maskawa (CKM) matrix which describes the mixing of

the three quarks, a phenomenon that has been observed in experiments.

In summary, the physical content of the standard model is as follows.

There are eight massless gluons, three massive weak bosons and one massless

photon, giving a total of twelve gauge bosons. There are three generations

of fermions, each generation having two leptons, and two quarks with three

colours each. This gives a total of twenty-four fermions. There is also one

scalar Higgs particle.13 As for the free, real parameters, there are three

gauge coupling constants, three lepton masses, six quark masses, four real

parameters in the CKM matrix and two parameters in the Higgs potential.

This gives a total of eighteen parameters. Actually, there is one more pa-

rameter: the QCD vacuum angle θQCD which is typically taken to be zero.14

And if one incorporates neutrino masses (see the next section), along with

neutrino mixing and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-

trix, there will be at least seven additional parameters.

Today, any purported model of particle physics must, in some way or

another, reproduce, or reduce to, the standard model. Such a condition

severely constrains the way one goes about constructing extensions of the

standard model. In particular, it has meant that a large portion of this thesis

13The Higgs doublet, made of the complex scalar fields φ0 and φ−, has four degrees of
freedom, three of which are eaten by the W and Z bosons leaving a single physical Higgs
field.

14Experiments have been done to measure the effect of θQCD but none have succeeded
and instead given the bound θQCD . 10−11.
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is devoted to studying mechanisms that are able to confine the separate

pieces of the standard model to a domain-wall region. Using a combination

of such mechanisms, we will eventually demonstrate how to construct a

model very close to the standard model, but which is confined to a brane.

To finish our discussion of the standard model, we will point out some

of its important shortcomings and also discuss the grand idea of grand uni-

fication.

1.2.5 Shortcomings of the standard model

Despite its great successes and sound mathematical footing, the standard

model has some unresolved omissions, and also scope for theoretical im-

provement. Excluding gravity, the standard model should be a model of

all particles and forces, but it lacks a description of neutrino masses and of

dark matter. There is also no convincing mechanism for baryogenesis. To

make any experimental predictions, the parameters of the standard model

need to be set; they could theoretically take almost any value, and this could

potentially be improved. There is also no profound reason for the particular

set of fermions that nature contains,15 or the fact that there are three gen-

erations. An even more difficult question, which is probably related more

to the theory of gravity than particle physics, is why there seems to be

only three spatial dimensions and one time dimension. More technical and

possibly aesthetic problems with the standard model include the hierarchy

problem and the allure of grand unification. We will elaborate on some of

these issues here and in the following section.

Initially, neutrinos were thought to be massless particles because the en-

ergy they carry away from a reaction is almost all in the form of kinetic

energy.16 They are also very difficult to detect directly. Recent experiments

which detect neutrinos from the sun, astrophysical sources, man-made nu-

clear reactors and accelerators, indicate that the three generations of neutri-

nos can morph into one another. The straightforward quantum mechanical

explanation for this phenomenon, known as neutrino oscillations, assumes

that the three neutrinos have slightly different masses, and over time dif-

15Actually, anomaly cancellation (ensuring that the quantum version of a classical theory
retains the desired symmetries) does have something to say about the fermion content.

16In a relativistic context, the energy of a particle is split between its rest mass energy
(a fixed quantity) and its kinetic energy, or momentum. Massless particles have all their
energy in their momentum.
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ferent masses evolve at different rates, transforming the neutrinos amongst

themselves. Neutrino masses can be incorporated into the standard model

using a range of different techniques. The leading candidate is the see-saw

mechanism, which posits the existence of a right-handed neutrino, and gen-

erates a very light, along with a very heavy, neutrino state. We will not

discuss neutrinos in any depth in this thesis, and, where we do work with

them, we will make the approximation that they are massless.

There is also a lot of astrophysical evidence for a new form of matter,

called dark matter, that interacts very weakly with the gauge bosons and

fermions in the standard model. In the framework of QFT, dark matter

can be added to the standard model by simply adding a new matter field

or fields, and possibly gauge fields, that have very small couplings to the

existing standard model fields. There is currently not enough experimental

data to narrow down the plethora of ways in which dark matter can be

implemented, and we do not consider it at all in this thesis. We also ignore

the problem of baryogenesis, which is the name given to the mechanism

that supposedly generated, in the early stages of the universe, the excess of

matter compared to anti-matter.

The free parameters of the standard model include the gauge coupling

constants, couplings between the Higgs and the fermions, and the Higgs po-

tential parameters. These parameters are set by performing experiments,

and once this is done they can be used to predict results of further, indepen-

dent experiments. Reducing the number of parameters by finding a model

that predicts a relation among two or more of them, or a model that derives

them from fewer, more fundamental parameters, is the goal of many the-

oretical physicists. As we shall show in this thesis, our domain-wall brane

models provide the framework for such a reduction in the number of parame-

ters, which is typical of theories with extra dimensions. The issue of particle

content, the reason for the seemingly random choice of quantum numbers

in (1.8), and the choice of three generations, are theoretically similar to free

parameters, and it is hoped that they too have a deeper explanation. In

this thesis, as in many other models that have been developed, the quantum

numbers find a partial meaning in the context of grand unification.

The hierarchy problem of the weak force is an aesthetic problem con-

cerning the way the Higgs mechanism is implemented, and may point to

a deep problem in our construction of the standard model. It is expected
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that this model, a model of the sub-atomic world, should be able to make

predictions at all available energy scales. Current experiments can reach

energies of around 1 TeV,17 and the standard model agrees very well with

data produced at such energies. But it is believed that energies, and the-

oretical predictions, should go at least all the way up to the Planck scale,

MPl ∼ 1019 GeV,18 because this is the energy scale of gravity (more pre-

cisely, at this energy, gravity will compete with QFT effects). Due to the

nature of QFT — where all processes can occur, even ones that violate

energy conservation — the theoretically natural value for a dimensionful

parameter is proportional the largest energy accessible in the theory. In the

standard model, the only dimensionful parameter is the parameter which

controls the magnitude with which the Higgs dynamically breaks the elec-

troweak symmetry; this is v in equation (1.6). So if the standard model is

to provide predictions up to Planck sized energies, the natural value of v

should be of order the Planck scale. But such a value is at complete odds

with experiment; correct predictions of weak processes requires v to be 174

GeV. This discrepancy between the natural value and the required value

is known as the (electroweak) hierarchy problem. There are many models

which attempt to resolve this hierarchy problem, and two particular ones

that utilise extra dimensions will be discussed shortly.

In relation to questions about nature’s particular choice of fermions, it

is also interesting to wonder why the particular gauge group that describes

interactions is (1.7), and not some other choice of group. This is a much

more profound problem than most of the other issues with the standard

model, and a greater understanding of the problem is undoubtedly found in

the study of grand unification.

1.2.6 Grand unification

Perhaps the first attempt at a major improvement of the standard model

was the further unification of the individual gauge groups. Since the electro-

magnetic and weak forces had common origins in the electroweak force, it

seemed sensible to try and generalise such a theme and unite the electroweak

17Throughout this thesis we will make liberal use of both natural units, where the speed
of light in vacuum is c = 1 and the reduced Planck constant ~ ≡ h/2π = 1, as well as the
SI prefixes G=109 and T=1012. Conversion from electron-volts (eV) to SI units involves
the equality 1 eV = 1.6 × 10−19 Joules, along with certain powers of c and ~.

18Defined by M2
Pl = ~c5/G, where G is Newton’s constant.
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force with the strong force. This idea is called grand unification and a model

that incorporates such an idea is called a grand unified theory or GUT. The

first attempt at constructing a GUT was the SU(5) model proposed by

Howard Georgi and Glashow in 1974 [37]. Here, the three gauge groups of

the standard model are contained as sub-groups in the larger SU(5):

SU(5) ⊃ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (1.11)

In the context of local gauge symmetries and gauge bosons, the relation (1.11)

implies that, of the 24 gauge bosons of SU(5), 12 of them are precisely those

of the standard model. The other 12 gauge bosons, labelled X and Y, are

an addition to the theory, carry a colour charge, isospin and hypercharge,

and mediate interactions which mix the strong and electroweak forces.

One of the major drawbacks of unification is the complexity, and extra

parameters, introduced in order to break the GUT group to the standard

model; this is usually accomplished by using a dedicated Higgs field χ (in

the 24 component adjoint for SU(5)) and associated symmetry breaking po-

tential. The energy scale at which χ breaks the GUT symmetry is known as

the GUT scale, denoted MGUT, whose value varies for different grand unified

models. It is typically around 1016 GeV, just below the Planck scale. At

energies below MGUT the SU(5) symmetry is broken by the vacuum state

of χ, and the Higgs mechanism gives a mass of order MGUT to the 12 ad-

ditional gauge bosons X and Y,19 with the standard model gauge group as

the left over symmetry. Such complexity in the Higgs sector is counteracted

by the reduction in the number of gauge group coupling constants; for the

SU(5) model there is only one parameter, as opposed to the original three.

Although, in order to obtain predictions for the three standard model cou-

plings at low energies, one requires two values: the SU(5) coupling constant

and MGUT.

Unification of the gauge bosons is one part of a grand unified theory, the

other being unification of the fermions. SU(5) is remarkable in that, not

only is it the unique smallest group that contains the standard model,20 it

19In order to give the X and Y gauge bosons a mass and keep the standard model gauge
bosons massless, the Higgs field χ must break the GUT symmetry in a very particular
way.

20In other words, any simple group H (which cannot be decomposed into a product of
groups) that is not SU(5) but contains the standard model GSM, also contains at least
one additional group J , i.e. H ⊃ GSM ⊗ J .
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also admits precisely one generation of fermions in just two representations.

These representations are the 5∗ and 10 and they contain the fermions as

follows:

ψ5 =

















dc1
dc2
dc3
e

νe

















L

, ψ10 =
1√
2

















0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −ec
d1 d2 d3 ec 0

















L

. (1.12)

The charge conjugate field used here is defined by ψc = γ2ψ∗ and has oppo-

site quantum numbers to ψ. We use subscript L on the vector and matrix

to indicate that one needs to take the left-handed projection of all compo-

nent fields. The three separate colours of the quarks are labelled with the

subscripts 1, 2 and 3.

We shall elaborate on exactly what it means for ψ5 and ψ10 to be com-

posed of the individual fermion fields as expressed by (1.12). Consider ψ5

which a priori is just a vector of five Dirac spinors. Under a general SU(5)

rotation21 all five of these spinors will transform into combinations of each

other. If we restrict our rotations to, for example, the rotations correspond-

ing to the SU(3)C sub-group, then the three dc’s in ψ5 transform only into

combinations of themselves; they do not mix with the leptons e and νe. Thus

the dci are a triplet of SU(3)C (and a singlet of SU(2)L) and can be called the

down quark. Similarly, the e and the νe remain fixed under the restricted

rotations corresponding to SU(3)C , so they are singlets of this group. In this

manner, one can check all the quantum numbers of the components of ψ5

and ψ10 by restricting SU(5) rotations to rotations of its sub-groups. This is

the information that is expressed in (1.12). The fact that such an economi-

cal yet complete unification of the fermions can be done is quite remarkable,

and is what draws physicists to the idea of grand unification. An effective

way to visualise all the different fermions in the standard model, and gain

insight as to why SU(5) unification works, is to plot the quantum numbers

of (1.8) in a particular way, as we have done in Figure 1.1.

Apart from unifying the fermions into larger representations (although

in SU(5) they are not completely unified; full unification would put ψ5 and

21If U ∈ SU(5) then ψ5 transforms as ψ5 → ψ′
5 = U∗ψ5. And ψ10 → ψ′

10 = Uψ10U
T .
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U(1)Y

SU(2)L
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νL

eR

eL
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uL

dR

dL

νL

νR
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eR

uL

uR

dL
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Figure 1.1: Weight diagram of the fermions of the standard model. The fermions
are plotted according to their quantum numbers given by (1.8): Y is along the
horizontal axis and I3 (0 for an SU(2)L singlet, ± 1

2 for the upper/lower component
of a doublet) is along the vertical axis. A single dot represents an SU(3)C singlet
(a colour-neutral lepton), while three dots represent a triplet (a coloured quark).

ψ10 together), grand unification also explains charge quantisation: why the

Y hypercharges in (1.8) take on their specific values. When there is a U(1)

group that does not have its roots in a larger group, the hypercharge values

corresponding to the U(1) are not restricted to any value. In the case of

the standard model group (1.7), this is true for U(1)Y , and one seeks an

explanation as to why the electric charge of a down quark seems to be

exactly one third of the electric charge of an electron (since electric charge is

directly related to Y ). In a GUT the hypercharges corresponding to all U(1)

sub-groups are restricted: the sum of the hypercharges of all the individual

components within each representation of the GUT group must be equal to

zero. For example, in ψ5 we have three down quarks and two leptons which

give the sum 3× 2
3 + 2×−1 = 0, and ψ10 yields 3×−4

3 + 6× 1
3 + 1× 2 = 0.

In the SU(5) scheme, along with the χ Higgs field which breaks the

GUT symmetry to the standard model, another Higgs is needed for the

usual electroweak breaking. Just as the lepton doublet l is put into the

representation ψ5, the Higgs doublet Φ (made of φ− and φ0) is contained in
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a scalar multiplet that transforms as a 5∗:

Φ5 =

















φ1

φ2

φ3

φ−

φ0

















. (1.13)

The three extra fields φ1, φ2 and φ3 are called coloured Higgs fields because

they transform as a 3∗ of the SU(3)C sub-group. The vacuum state of the

φ0 component is again responsible for breaking electroweak symmetry, and

the full breaking pattern is

SU(5)
χ−−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y (1.14a)

Φ5−−→ SU(3)C ⊗ U(1)EM . (1.14b)

Unfortunately, the SU(5) model that we have described is not a good

description of nature. Since the down quark and electron have a common

origin in ψ5 they obtain identical masses, which obviously contradicts ob-

servation. One way to alleviate this problem is to introduce more Higgs

fields, which end up complicating the model and reduce its predictive power.

Another major issue is the prediction of more rapid proton decay than is

observed. Both the heavy X and Y gauge bosons and the coloured Higgs

fields induce proton decay, a feat achieved by mediating interactions that

transform leptons into quarks, and vice versa. The most predominant re-

action is p → π0e+, and it is difficult to reduce the rate of such processes

without drastic modifications to the model.

There is also the problem of so-called gauge coupling unification. The

three values corresponding to the strong and electroweak coupling constants

of the standard model are predicted from the single coupling constant of the

SU(5) group, and they do not agree with experiment. The precise values of

these couplings, as well as the rate of proton decay, actually depend on the

GUT scale of the model, which, when adjusted to higher energies, can help

to bring the predicted values closer to the observed ones. In the simplest

SU(5) model, it is not possible to raise the GUT scale high enough and

major modifications — such as supersymmetry — are required to produce

a viable theory where the three gauge coupling constants have a common
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origin.

Nevertheless, the basic SU(5) scheme is at the core of many GUT based

models, and is also the starting point for further grand unification. It is pos-

sible to completely unify the fermions by embedding SU(5) in SO(10) [38],

and placing ψ5, ψ10 and a new singlet neutrino (which can be used to gener-

ate neutrino masses) together in a sixteen component representation. One

can go even further and embed SO(10) in E6 and then embed E6 in E8. All

such embeddings require an increasingly sophisticated Higgs mechanism to

break the symmetries, although there are some tricks that can be used to

keep the model as minimal as possible and reduce the number of free param-

eters. In this thesis we will discuss how extra dimensions can help alleviate

some of the problems of grand unified theories, like proton decay, while keep-

ing their complexity to a minimum. In particular we will present models

based on SU(5) and E6 and introduce the notion of clash of symmetries [39].

Aside from using SU(5), there are also other ways of embedding the

standard model gauge group in larger groups, and the fermions in larger

representations. One such model, due to Jogesh Pati and Salam [40], was

conceived in 1974, just after the model of Georgi and Glashow, and is based

on the symmetry group SU(4)⊗SU(2)L⊗SU(2)R.22 The fermion electroweak

doublets q and l are put in a (4,2,1) representation, and the singlets dc, uc,

ec along with a singlet neutrino νc are put in a (4,1,2). As usual, the GUT

symmetry of this set-up needs to be broken to the standard model, which

can be implemented using Higgs fields, albeit at the cost of complexity.

These days grand unification plays a large part in many theories, in-

cluding electroweak scale supersymmetry and its many variations, as well

as technicolour, trinification, extra dimensions and superstring theory. In-

deed, there are many paths, not just in the direction of GUTs, which can

be taken to address the shortcomings of the standard model and enhance

our understanding of the sub-atomic world. Our focus will now turn to the

extra-dimension avenue, the modern ideas of brane worlds and domain walls,

and the various ways of realising a brane world model as an extension of the

standard model.

22Actually, Pati and Salam’s main proposal was the unification group SU(4)⊗SU(4)L ⊗
SU(4)R. At the time only two generations of fermions were known to exist, so they made
the L and R groups twice as big as they needed to be to accommodate the first two
generations. Today, the Pati-Salam model is named after what they originally called the
“economical” version of their main proposal.
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1.3 The early years of brane world models

So far we have seen extra dimensions invoked in order to facilitate the uni-

fication of electromagnetism and general relativity, and they also appear as

a necessary part of the various string theories. In these models, extra di-

mensions were generally considered an unwanted artifact — a mathematical

necessity whose presence was tolerated for the sake of some grander physi-

cal idea. But by the 1980s, particle physics had come a long way, physicists

were looking for directions beyond the standard model, and extra dimensions

started to look more like a tool than a hindrance. Some basic ideas were

fleshed out in the form of toy field theories where particles were trapped

to a subspace in a higher dimensional background. Then the 1990s saw

the revolution of superstring theory and its ten dimensions, the discovery of

M-theory, and the realisation that strings were not alone in the extra dimen-

sions, but that they lived in the presence of branes. This realisation spurred

a new class of extra dimensional models that promised exciting solutions

to old problems, and seemed to offer unlimited model building potential.

In this section we will discuss some of the more notable and relevant dis-

coveries that chart the way through these two decades of extra-dimensional

renaissance.

1.3.1 Field theoretic domain walls

In the early 1960s, there was some independent interest in using extra di-

mensions as a purely mathematical tool to help determine representations of

the Lorentz group in curved spacetime. The idea was to embed our curved

four-dimensions in a flat higher dimensional spacetime, and use the known

behaviour of particles in these flat dimensions to determine their effective

behaviour as seen from the four-dimensional subspace [41, 42]. This idea of

embedding our spacetime in something larger gained renewed interest in the

1980s when various people discovered ways to reduce the dimensionality of

a model, and dynamically generate a subspace, by using certain fields as a

trap.

One of the very early ideas, conceived in 1982, of using classical fields

to produce a subspace and reduce the number of dimensions is due to Kei-

ichi Akama [43]. In his model the higher-dimensional spacetime, or bulk, is

six-dimensional Minkowski spacetime, and in it reside a charged Higgs field
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and associated U(1) gauge field. Akama found particular solutions for the

background configuration of these two coupled fields, a solution which takes

the form of a vortex, an extended string-like topological defect,23 similar to

the Nielsen-Olesen solution [44]. Such a configuration reduces the dimen-

sionality of spacetime by two: particles can be trapped inside the vortex

and are only free to move in the three spatial directions running along the

direction of the string (and they also retain their time degree of freedom).

Akama showed that, at low energies, fields are suppressed outside the vortex

solution and such a trapping is induced, and he also showed that the equa-

tions of general relativity hold in this four-dimensional subspace. Thus the

universe that we observe, including the standard model and gravity, may be

trapped inside a vortex living in six dimensions.

A year later, Valery Rubakov and Mikhail Shaposhnikov [45] indepen-

dently discussed the idea that the ordinary particles that we observe may

be trapped in a “well” which is very deep and narrow in extent in any extra

dimensions (so that particles find it difficult to move in these dimensions),

but which is flat along the usual three dimensions that we observe. As did

Akama, Rubakov and Shaposhnikov suggested that the well might have dy-

namical origins, and presented a toy model whereby particles are trapped

to a domain wall residing in a five-dimensional bulk; the dimensionality is

therefore reduced by one. Their model is described by the five-dimensional

action (disregard any previous meaning given to variables used here; they

will be redefined)

Sφ =

∫

d5x

[

1

2
∂Mφ ∂Mφ− V (φ)

]

, (1.15)

where φ is a real scalar field which will form the domain-wall structure. Our

usual four dimensions will be labelled by xµ and the extra dimension, by

w. Note that gravity is not described, or taken into account, by this theory.

The potential for the scalar field is

V (φ) =
λ

4

(

φ2 − v2
)2
, (1.16)

where λ and v are free parameters of the model. As can be seen in Fig-

23These strings are extended composite objects arising from a configuration of the un-
derlying fields. They are not to be confused with the fundamental strings of string theory!
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ure 1.2a, there are two degenerate minima of V (φ) which occur at φ = ±v,
which will be the preferred values for the ground, or vacuum, state of φ. As

discussed previously, such vacuum solutions will dynamically break a sym-

metry of the original action (1.15); in this case the particular symmetry is

a Z2 symmetry where φ→ φ′ = −φ.

So what value does φ actually take in a given instance of the theory?

The answer depend on the particular boundary conditions that are imposed:

φ could be −v everywhere, +v everywhere or, more interestingly, −v in one

particular region of spacetime and +v in another. This latter scenario corre-

sponds to a domain-wall configuration; the domain wall being the relatively

small region that separates the −v vacuum from the +v vacuum. Mathe-

matically, one can find this solution by looking at the classical equation of

motion for φ:

∂M∂Mφ+ λφ3 − λv2φ = 0 . (1.17)

A particular solution that depends only on the extra dimension w is

φDW(w) = v tanh
(

v
√

λ/2 w
)

, (1.18)

which is the domain-wall (DW) solution, and is plotted in Figure 1.2b. Due

to its pictorial representation, a domain wall is commonly referred to as

a kink, and such solutions are part of the more general class of soliton

solutions [46], which are stable field configurations that have an inherently

extended nature and non-trivial topology.

Rubakov and Shaposhnikov analysed the perturbations of φ— the ability

of φ to deform away from the solution (1.18) — and found the massless

Nambu-Goldstone boson associated with zero-energy-cost translations of the

kink. The details of this mode and the other modes of the kink will be

discussed in detail in Chapter 3. For now it is enough to mention that,

after averaging out the extra dimension (integrating over w in the action),

such modes look like typical four-dimensional scalar fields confined to the

domain wall. This trapping of scalar fields is a useful phenomenon, but one

also needs to be able to trap fermions, and Rubakov and Shaposhnikov found

that such a thing occurred rather naturally in their model. They took the

original action (1.15) and added the action for a coupled, five-dimensional

fermion:

SΨ =

∫

d5x Ψ
(

iΓM∂M − hφ
)

Ψ , (1.19)
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Figure 1.2: (a) The quartic potential described by equation (1.16) used to induce
a domain-wall configuration. (b) In solid is the domain-wall solution given by
equation (1.18) that interpolates between the two degenerate vacua −v and +v.
A localised fermion profile, equation (1.22), is shown dashed; its vertical axis has
arbitrary units.

where Ψ is a four-component Dirac spinor, Γµ = γµ, Γ5 = −iγ5 and h is the

strength of the coupling between the kink and the fermion. To determine the

behaviour of Ψ, one looks at the Dirac equation of motion in the background

of the domain wall, which is

(

iΓM∂M − hφDW

)

Ψ = 0 . (1.20)

This equation can be solved using separation of variables

Ψ(xµ, w) = f(w) ψ(xµ) , (1.21)

where ψ(xµ) is interpreted as a four-dimensional fermion and f(w) is its

extra dimensional profile. Because the standard model is constructed using

massless, left-chiral fermions, one would like to assume these two properties

for the form of ψ. A massless fermion obeys iγµ∂µψ = 0, and left-chirality

can be imposed by γ5ψ = −ψ. Rubakov and Shaposhnikov showed that

there exists a solution for f compatible with these assumptions:

f(w) = exp

(

−h
∫ w

0
φDW(w′)dw′

)

=
[

cosh
(

v
√

λ/2 w
)]−h

√
2/λ

. (1.22)

The general form of f , shown in Figure 1.2b, is a smooth lump peaked
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at the centre of the domain wall. The width of f can be controlled by the

coupling h; a larger value of h gives a sharper peak. The physical interpreta-

tion of this solution is twofold. First, ψ has definite, fixed behaviour in the

extra dimension and so looses its w degree of freedom, making it look like

a true four-dimensional field. Second, the fact that f is centred on the kink

solution means that the four-dimensional ψ is localised, or trapped, to the

domain-wall region. This is exactly the kind of mechanism that is needed to

construct a domain-wall confined standard model! Indeed, we make heavy

use of this localisation mechanism, and its generalisations, throughout this

thesis.

Rubakov and Shaposhnikov mention that one should expect the fermion

confinement mechanism to generalise to other topological defects such as

vortex and monopole traps, and they even speculate that expansion of our

universe (more on this later) could find an explanation in the expansion of a

closed vortex. They also highlight the fact the massless fermions would need

to acquire a small mass if they are to be identified with the ones we observe,

and that gravity would need to be incorporated. We present solutions to

both of these issues in this thesis. As they point out, it is also very important

to determine the lower limit on the domain-wall trapping strength, since one

would expect to observe new physics above this energy.

Different approaches to trapping particles to a lower-dimensional sub-

space were investigated in the following years. In 1985, Matt Visser [47] had

the general idea that a particular form of the gravitational metric could be

arranged to break translation invariance in the extra dimension and prevent

particles from escaping from a thin region. He presented a specific example

where a five-dimensional U(1) gauge field coupled to gravity yielded a work-

ing gravitational trap. This idea was improved upon by Euan Squires [48]

who found a simple, three-dimensional (down to two-dimensional) analytic

realisation of Visser’s idea, where the gravitational metric alone was able to

trap a scalar field. An important ingredient of this model was the necessity

of having a large cosmological constant in the bulk, something that will be

present in many of the models we discuss. Another gravity-based model is

due to Gary Gibbons and David Wiltshire [49] who found that electromag-

netism and GR in a d-dimensional spacetime has a thick (d−2)-dimensional

membrane (similar to a domain wall) as a natural solution. They showed

that the electromagnetic field in their model was able to trap massless chi-
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ral fermions to the membrane, and that Lorentz invariance was properly

reproduced in this subspace, in contrast to Visser’s model.

These early constructions of domain-wall configurations that could trap

particles and produce a lower-dimensional subspace were only the beginnings

of using extra dimensions as a theoretical tool. The original superstring

models were about to be revived and they would provide a compelling and

sophisticated framework for building extra-dimensional models.

1.3.2 Superstring theory and D-branes

In 1984, Michael Green and John Schwarz made a discovery [50] which

started the first so-called string theory revolution. They considered a model

with two components: supersymmetric Yang-Mills theory and N = 1 super-

gravity. Usually, such a theory is inconsistent (it does not have full anomaly

cancellation), but Green and Schwarz showed that if the Yang-Mills gauge

group is SO(32) or E8 ⊗ E8, and if the supergravity is formulated in ten

dimensions, then there is a chance to obtain consistency. The chance is

in the fact that you need to choose some specific extra terms to add to

the original action. Green and Schwarz determined what these extra terms

had to be, and this would have been an interesting discovery in its own

right had it not been for the remarkable thing they found: in the (type

I) ten-dimensional superstring theory based on SO(32), these extra terms

appear automatically! There seemed to be something inherent in the way

superstrings were described that meant they produced a consistent theory.

A similar phenomenon was suggested to occur with E8 ⊗ E8 superstrings,

which would later be shown to be true.

The discovery of this consistent superstring theory was an important

breakthrough because it meant that physicists now had a single theory with

all the ingredients necessary to describe our world: fermions and gauge

bosons (from the supersymmetric Yang-Mills), a large enough gauge group

(SO(32) or E8 ⊗ E8) to contain the standard model gauge group, gravity

(from supergravity), and, most importantly, it was quantum mechanically

consistent. But there was still the problem of the six extra dimensions

in the superstring spacetime that needed to be somehow hidden from the

low-energy physics that we are familiar with. Of course, the original Kaluza-

Klein idea that the extra dimensions are tiny and curled up — compacti-

fied — has a direct application here, and this is the most often used mech-
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anism in string theory to hide most, if not all, of the extra dimensions. As

we will see though, there is the possibility that some of the dimensions are

much larger than the tiny 10−29 mm envisaged by Klein all those years ago.

An inherent feature of superstring theory is supersymmetry; this latter

idea can also be applied directly to the standard model, where all the gauge

bosons get new fermionic partners, and all the fermions get new bosonic

partners. This particular form of supersymmetry is implemented at the

electroweak scale and, among other attractions, provides a solution to the

hierarchy problem. In an attempt to understand why electroweak super-

symmetry occurs at such an energy scale, Ignatios Antoniadis suggested in

1990 [51] that this energy scale may be related to the internal compactifi-

cation radius of an extra dimension of superstring theory. The electroweak

scale is around about 1 TeV, so the extra dimension would need to have a

corresponding length of about 10−16 mm. This number is huge compared

with the traditional Kaluza-Klein compactification size, yet Antoniadis ar-

gued that such a size is possible, and that it yields very distinct experimental

signatures in its spectrum of supersymmetric Kaluza-Klein particles.

Another important discovery of string theory was that of the Dirichlet-

brane, or D-brane. Such objects were proposed in 1989 by Jin Dai, Robert

Leigh and Joseph Polchinski [52] to be fundamental entities that lived and

propagated in the string-theory spacetime. As the name suggests, a brane

is a higher dimensional version of a string, and, while branes can be of any

dimension that fits in the spacetime, it is useful to think of them as a mal-

leable two-dimensional surface, or a sheet (denoted D2-brane). A Dirichlet

boundary condition is a restriction on the value of some entity, and, in the

case of Dirichlet-branes, the restriction applies to the ends of open strings

which are forced to terminate on D-branes. In ten-dimensional superstring

theory, the end points of an open strings have nine spatial degrees of free-

dom, and if they terminate on a D2-brane, they loose seven of these, but

retain the two corresponding to movement on the surface of the D2-brane.

This corresponds exactly to the phenomena of dimensional reduction and lo-

calisation! Further analysis of D-branes by Polchinski [53] in 1995 fuelled the

second string theory revolution, and D-branes would become a fundamental

building block of models based on string theory.

In that same year, 1995, M-theory was discovered by Edward Witten;

see the paper by Petr Hořava and Witten [54]. The details of this myste-
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rious theory were unknown, but the authors suggested that the ‘M’ stand

for “membranes” since the theory was an eleven-dimensional extension of

superstring theory. In fact, what they did know about M-theory was that, in

different limits, it seemed to reduce to the five different superstring theories

known at the time. Furthermore, they determined the low-energy limit of

M-theory to be eleven-dimensional supergravity. Hořava and Witten later

found more evidence for M-theory [55], and, in 1998, André Lukas, Burt

Ovrut, Kellogg Stelle and Daniel Waldram found a way of interpreting this

theory [56]. They were interested in the low-energy behaviour of the E8⊗E8

superstring, and proposed that one should take M-theory and eliminate six

of the spatial dimensions by compactifying them in the usual Kaluza-Klein

way (on a Calabi-Yau manifold). The leftover five-dimensional spacetime

then admits a pair of D3-brane solutions which live at the two edges of the

fifth spatial dimension, and they identified the spacetime of our universe

as the volume inside the D3-branes. This construction uses the fact that

strings are localised to D-branes, and provides a scenario, in the formalism

of superstring theory, whereby our universe is confined to a brane.

We are now going to leave the details of eleven-dimensional M-theory

and superstrings behind, but retain the generic ability to write down a

model with branes and extra dimensions, and where particles are automati-

cally confined to these branes. We will refer to such branes as fundamental

branes, and remember that they have some deeper origin in string theory.

The other kind of branes we will be working with are domain-wall branes.

These are dynamically generated, field theoretic domain walls that play the

role of a D-brane by confining other fields using some particular mechanism

in the context of field theory. As discussed previously, Rubakov and Sha-

poshnikov found a way of confining fermions; we now discuss a mechanism

which confines gauge fields.

1.3.3 The Dvali-Shifman mechanism

It turns out that confining gauge fields to a domain-wall brane requires

much more sophisticated theoretical machinery than the mechanism which

confines fermions. Consider the case of confining a U(1) gauge field (electro-

magnetism) to a wall. The straightforward approach might involve taking a

five dimensional U(1) gauge field, and dynamically breaking the symmetry

associated with this field in the region outside the domain wall; the region
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Figure 1.3: In both of these figures, the bulk on the left and right is light gray, the
centre region of the domain wall is dark gray, the black dot is an electric charge, and
the white lines are electric field lines. (a) A näıve approach to confining a U(1) gauge
field that fails. The symmetry is broken in the bulk by a Higgs, making this region a
superconductor and forcing electric field lines to end here, effectively screening the
charge. (b) A schematic representation of the Dvali-Shifman mechanism at work.
The SU(2) symmetry is unbroken in the bulk and this region is in the confinement
phase and acts as a dual superconductor, repelling electric field lines. For observers
in the domain wall separated by a large enough distance, the electric field lines run
parallel to the bulk and the dimensionality of the electric force is reduced by one.

where we want to suppress the gauge fields, to keep them localised to the

wall. Such a symmetry breaking is easy enough to arrange: you just need

a Higgs field with a vacuum state that changes as one moves along the ex-

tra dimension. In this set-up, the photons associated with the U(1) group

acquire a mass in the bulk outside the domain wall — where the Higgs vac-

uum is arranged to be non-zero — and is massless inside the wall — where

the Higgs vacuum goes to zero. One would imagine that an individual pho-

ton would prefer to remain massless (since this requires less energy) and so

would stay localised in the region close to the wall.

Figure 1.3a depicts this situation with a single electric charge placed in-

side the wall. In the bulk, the non-zero Higgs vacuum creates a superconduc-

tor, and, just like ordinary conductors, the electric field lines corresponding

to U(1) photons must end on this superconductor. Thus we get exactly the

opposite effect to what we intended: electric charges are rendered invisible,

or screened, because the photons disappear into the bulk!

In 1996, Gia Dvali and Mikhail Shifman found a way around this problem

by making the bulk a dual superconductor instead of a normal supercon-

ductor [57]. They showed that in order to confine a U(1) gauge field, the
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theory needs to begin with a five-dimensional G = SU(2) gauge field, along

with two scalar fields. One of these scalar fields, φ, is a singlet of G (i.e.

it is un-charged) and serves to form a domain wall, as per equation (1.18)

and Figure 1.2b. The other scalar field, χa (a = 1, 2, 3), is a triplet (in the

adjoint) of G and is used to break the gauge symmetry in a specific way.

This theory is formulated in five-dimensions, and the action is

S =

∫

d5x

[−1

4
F aMNF aMN +

1

2
∂Mφ∂Mφ− λ

4

(

φ2 − v2
)2

+
1

2
(DMχa)†DMχ

a − λ′

2

(

χaχa + κ2 − v2 + φ2
)2
]

, (1.23)

where F aMN is the field strength tensor corresponding to the SU(2) gauge

group, and λ, λ′, v and κ are real parameters which control the formation

of the domain wall and the Higgs symmetry breaking profile.24 The vacuum

configuration of this model is as follows. The field φ obtains a kink profile

and asymptotes to ±v on either side of the domain wall. Near the centre

of the wall φ ∼ 0 and, if one chooses parameters such that κ2 − v2 < 0,

χ becomes tachyonic, meaning that its vacuum state will be non-zero and

the G gauge symmetry is dynamically broken inside the domain wall. Far

from the wall φ → ±v and the vacuum state of χ will be zero. The extra

dimensional profile, or solution, for χ is therefore a peak centred in the

domain-wall region. (In fact, the configuration of φ and χ looks exactly like

the two curves in Figure 1.2b, where χ has the shape of f .)

Figure 1.3b is a schematic representation of such a configuration of fields,

and again we have shown the electric field lines for a charge placed in the

wall. The bulk is a dual superconductor because G is a non-Abelian gauge

group and has the property of asymptotic freedom. In contrast to a super-

conductor which repels magnetic field lines, a dual superconductor repels

electric field lines and, from the point of view of a charge on the wall, gives

the impression that photons are confined to the central wall region. Now in

this region, χ dynamically breaks the symmetry SU(2) → U(1) and the non-

Abelian nature of G is destroyed, leaving a massless photon-like gauge field

associated with the remaining U(1) symmetry. It is possible to argue that

the reason these photons do not leave the wall is because in the bulk they

24It is not possible in this simple model to have one scalar field play the role of the
domain wall and the Higgs at the same time.
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must be incorporated into an entity which is completely SU(2) symmetric;

the lowest energy state of this form having a large mass corresponding to

the mass gap of this non-Abelian group. On the domain wall, for distances

r much larger than wall width, the electric field lines are parallel to the wall

and the electric potential looks like it does in our four-dimensional universe:

Uelec ∼ 1/r.

This mechanism for gauge field confinement, the Dvali-Shifman (DS)

mechanism, works with any non-Abelian SU(N) theory broken to any of

its sub-groups.25 One important feature of the DS mechanism is gauge

universality: all charged fields couple to the corresponding gauge field with

equal strength, irrespective of any details of the distribution of the fields

in the extra dimension. This is a crucial feature because it guarantees,

for example, that the up quark has exactly two-thirds the electric charge

of the electron. This occurs in the DS mechanism because any part of a

particle that is outside the domain wall is connected back by a tube of

gauge-field flux lines. There is good discussion of this phenomenon in the

1998 paper by Nima Arkani-Hamed and Martin Schmaltz [58], and these

authors also discuss the similarities between the DS mechanism and D-brane

string confinement.26

The major drawback of the Dvali-Shifman mechanism is the reliance

on non-perturbative field theory in order to get gauge field confinement

(asymptotic freedom) in the bulk. As a consequence, it is difficult to per-

form a quantitative analysis of the bulk gauge sector. Nevertheless, the DS

mechanism seems to provide a comprehensive solution to the problem of

confining gauge fields to a field theoretic domain-wall brane. There does

not seem to be any other satisfactory way to do this (see Chapter 2 for an

attempt), and we use the DS mechanism in our brane-localised version of the

standard model in Chapter 5, as well as in the extension to E6 in Chapter 6.

We now move on to discuss models of extra dimensions based on the

fundamental branes of string theory, as a prelude to the Randall-Sundrum

set-up which provides a way to confine gravity.

25To use the DS mechanism in five-dimensions (or higher), one must assume non-Abelian
gauge field confinement works, even though Yang-Mills theory is not renormalisable in
dimensions higher than four. We will discuss this caveat in greater detail in Chapter 5.

26Another lucid discussion of these matters can be found in Dvali, Nielsen and
Tetradis [59]. See also the paper by Dubovsky and Rubakov [60].
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1.3.4 Low-energy string theory and brane worlds

Recall the electroweak hierarchy problem (Section 1.2.5): the natural size

of the Higgs dimensionful parameter is the Planck scale (the largest energy

the standard model is valid up to), yet such a value is not consistent with

experiment. There is a deep assumption here: that our weak measurement

of gravity is a direct probe of the highest available energies. It is quite

possible that the scale of gravity, the four-dimensional Planck scale MPl,

is an illusion that is indirectly related to the true, or fundamental, Planck

scale M∗, that is, the energy at which general relativity must be replaced

by a quantum theory of gravity.

The idea that MPl and M∗ could differ was realised in early 1998 in

the model of Arkani-Hamed, Savas Dimopoulos and Dvali [61]; the ADD

model. They proposed that the weak scale is actually the fundamental

energy scale, so M∗ ∼ 1 TeV, and gravity, the Higgs mechanism and gauge

field interactions unite at this scale. We observe gravity to be weak in our

four-dimensional universe because of the presence of two (or more) extra

compact dimensions which dilute the gravitational field. Note that there

is no need to localise gravity to a subspace to ensure that we observe a

four-dimensional gravitational force: it is enough that the extra dimensions

are compactified (maybe even on a large scale) so that gravity can saturate

the extra dimensions first, become diluted, and then propagate in the usual

way in the remaining three spatial dimensions. In fact, this mechanism of

reducing the strength of gravity only works because gravity has not been

localised to a brane of some sort. Of course, at distances which are of

comparable size to or, smaller than the extra dimensions, gravity is heavily

modified from the usual case because at these distances you notice that

gravity is not really four-dimensional at all.

In the ADD model, the apparent Planck scale is related to the funda-

mental Planck scale through the relation

M2
Pl ∼M2+n

∗ Rn , (1.24)

where n is number of extra dimensions and R is their common radius. For

the interesting case of two extra dimensions n = 2, we want M∗ ∼ 1 TeV

to solve the hierarchy problem, and so the radius must be R ∼ 104 eV−1 ∼
1 mm. This is a huge distance for particle physics — recall that the length
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corresponding to 1 TeV is 10−16 mm — and this distance explains (in this

model at least) why the observed Planck scale is so much larger than M∗.

The generic idea of the ADD proposal is that the hierarchy problem is solved

by bringing down the fundamental Planck scale, making the natural value

for the dimensionful Higgs parameter about 1 TeV, which is consistent with

observation.

Arkani-Hamed et al. gave a particular realisation of their proposal where

a vortex in six-dimensions was identified with our world, and the Pati-Salam

gauge group was used to incorporate the standard model. While gravity

could propagate in the bulk, the usual standard model fields had to be

confined to the vortex, or else their Kaluza-Klein excitations would ruin

the phenomenology of the model. They proposed that some new quantum

theory took over above about 1 TeV, and, in a subsequent paper in collabo-

ration with Antoniadis [62], outlined a way of embedding the ADD model in

superstring theory. Here, gravity is a manifestation of closed strings in the

bulk, and fermions and gauge fields are made from open strings ending on

D3-branes. One of the most exciting features of this model is the prediction

of stringy physics at energies that may be experimentally accessible in the

near future. Such a possibility meant that a great deal of attention was

given to the ADD model in the following years (see, for example, the phe-

nomenological studies by Arkani-Hamed, Dimopoulos and Dvali [63], and

Arkani-Hamed and Dimopoulos [64]), and some important problems were

ironed out, like stabilising the large size of the extra dimensions with bulk

scalar fields, and suppressing proton decay with split fermions.

Towards the end of 1998, Arkani-Hamed, Dimopoulos and John March-

Russell tackled the problem of the stabilisation of the millimetre sized extra

dimensions [65]. Since D-branes are dynamical entities, they are allowed to

deform and travel in the extra dimension(s), and these radial oscillations can

be modelled by a field, known as the radion. If the radion is left to behave

as it naturally would, there is no reason for the separation of the D3-branes

in the ADD model, and the radius of the extra dimension, to stay at the

desired value. In this later paper of Arkani-Hamed et al., it was shown that

a positive bulk cosmological constant could prevent the branes from moving

apart: a cosmological constant induces a potential energy that scales with

volume, so a smaller volume is preferred. To prevent a collapse, the authors

suggested either placing many branes in the bulk that repelled one another
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and supported the large size of the extra dimensions, or having a bulk field

with a non-trivial vacuum configuration that could not, in a sense, unwind

because of a conserved topological charge. The topic of stabilisation has

received much attention since this work, see Section 1.5.2 for some of the

details.

As discussed previously, the see-saw mechanism is the standard method

used to generate small neutrino masses; it relies on the fundamental Planck

scale being large. Despite this, small neutrino masses in the range 10−1

eV – 10−4 eV found natural explanations in the ADD model, as discovered

by Arkani-Hamed, Dimopoulos, Dvali and March-Russell [66]. One method

relied on the fact that any massless singlet fermions in the bulk could be

interpreted as right-handed neutrinos, and, due to the large size of the bulk,

would have a very small probability of interacting with brane localised left-

handed neutrinos. This leads to an effective coupling between left- and

right-handed neutrinos which is very small, and endows the neutrinos with

a small Dirac mass. For Majorana neutrinos, one can arrange to break

lepton-number on a brane which is far away from our brane, and have this

breaking transmitted by messenger fields which are suppressed due to the

large bulk. So large extra dimensions can not only dilute gravity, they can

also dilute the couplings that lead to neutrino masses.

In early 1999, Arkani-Hamed and Schmaltz invented the split fermion

mechanism [67] to solve the general problem, in the context of large ex-

tra dimensions, of unnaturally small couplings between fields. Usually, one

obtains small couplings by imposing a symmetry which, if broken in the

correct way, allow only small couplings for the terms that break the sym-

metry. Arkani-Hamed and Schmaltz’s alternative idea was to use “higher

dimensional geography”, whereby different fermionic fields are localised at

different locations in a large extra dimension. If the extra-dimensional pro-

files of these fermions (see for example f in Figure 1.2b) are sharply peaked

and drop off exponentially, they only need to be separated by a small dis-

tance, of the order of a few multiples of the width of the profiles, to have

a tiny overlap. This yields naturally small, effective four-dimensional cou-

plings, which are computed from integrals over the extra dimension of the

product of the profiles. The couplings can be controlled by arranging the

locations of the fermions, using a five-dimensional Dirac mass term, and a

good match to reality can be obtained by separating the quarks from the lep-
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tons. In order to assure gauge universality, the profiles of the lowest energy

gauge fields must be flat in the extra dimension. This split fermion mecha-

nism finds broad application, including suppressing proton decay, producing

the fermion mass hierarchy, and generating small neutrino masses. We will

show that the mechanism finds a natural implementation in our model in

Chapter 5.

In the year just following the introduction of the ADD model, Merab

Gogberashvili proposed a model whereby the universe is a thin shell, a three-

dimensional sphere, expanding in a five-dimensional spacetime [68, 69, 70,

71]. His model solved the electroweak hierarchy problem in a very similar

way to the ADD model: the fundamental Planck scale is much smaller than

the observed Planck scale, and is set by the thickness ǫ of the shell, which

was determined to be ǫ ≤ 0.1 mm. The stability of these shells were analysed

using general relativity, and they were found to be long lasting. Furthermore,

gravity was found to trap matter to the shell and Newton’s law was recovered

for large distances. This shell-universe model is yet another example of how

extra dimensions can be successfully incorporated into a realistic model of

fundamental physics.

As is evident from the previous discussions, many old problems can be

solved, or at least understood from a different point of view, by using extra

dimensions. D-branes can confine the particles of the standard model to a

subspace in these extra dimensions, and mechanisms such as split fermions

can be invoked to construct models that agree with experiment, and provide

natural explanations for certain properties of our world. So far we have seen

realistic models with large (1 mm sized) extra dimensions. In this thesis

we are going to construct models of an infinitely large extra dimension,

which requires a mechanism that traps gravity to a domain wall, and we

will discuss such a mechanism shortly. But for the moment we need to take

a detour and introduce the basics of cosmology.

1.4 Basic cosmology

The many decades that saw the advancement of elementary particle physics

and the construction of the standard model also saw significant development

in the field of early universe cosmology. Physicists gained a broad under-

standing of the evolutionary time-line of our universe: from the initial big
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bang, through inflation and phase transitions, baryogenesis and nucleosyn-

thesis, all the way to the formation of large scale structures that we observe

today. Here, we give a brief overview of the basic theory behind these ideas.

1.4.1 Expansion and the FLRW metric

Cosmological events are played out upon the stage of an expanding universe.

The mathematics of this expansion are described by Einstein’s equations of

general relativity, and were determined very early on, between 1922 and

1937, by Alexander Friedmann [72, 73], Georges Lemâıtre [74, 75], Howard

Robertson [76, 77, 78] and Arthur Walker [79] (FLRW). Two important

observations about our universe are that, on the largest of scales, it looks

spatially homogeneous (the same at all locations) and spatially isotropic (the

same in all directions). Such observations can be modelled by the FLRW

metric27

ds2 ≡ gµνdx
µdxν = −dt2 +a2(t)

(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)

, (1.25)

where ds2 measures spacetime distances, gµν is the metric of GR, and xµ =

(t, r, θ, φ) are the four-dimensional spacetime coordinates (the spatial part

is in spherical coordinates). The function a(t) is known as the scale factor

and its evolution describes the expansion (or contraction) of spatial sections.

The constant k describes the curvature of the spatial sections, and can take

the values +1, 0 or −1 (after a suitable rescaling of r), which correspond

respectively to positive-curvature (like the surface of a sphere), flat space,

or negative-curvature (like the surface of a saddle).

A metric such as equation (1.25) is used to compute physical spacetime

distances between some given coordinates xµ. Having the scale factor a(t)

in the metric has the following consequence: two objects may remain sta-

tionary at the same coordinates (so their xµ’s are constant), yet the physical

distance between them may be changing due to a changing a(t)! To find the

behaviour of a(t), and hence determine the evolution of the universe, one

solves Einstein’s equations:

Gµν = 8πGTµν − gµνΛ . (1.26)

27Note that in this section on cosmology, we will be using −+++ for the metric signa-
ture, for consistency with Chapter 7. See Section A.3 for an overview of such conventions.
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Here, Gµν is the Einstein tensor made out of derivatives and products of the

metric gµν , G is Newton’s constant and Λ is the cosmological constant. The

energy content of the universe is described by the stress-energy tensor Tµν ,

which, for the homogeneous and isotropic case, is

T µν = diag(−ρ, p, p, p) , (1.27)

where ρ is the energy density of the particular source being modelled, and

p is its pressure, usually determined by the equation of state: p = wρ. For

dust the pressure is zero and w = 0; for radiation w = 1
3 ; for a cosmo-

logical constant w = −1. The total stress-energy tensor can be a sum of

contributions of the form (1.27), with each source having a different value

of w.

Taking Einstein’s equations (1.26), substituting the FLRW metric (1.25)

for gµν , and using for Tµν the form (1.27), one arrives at the so-called Fried-

mann equations

H2 =
8πG

3
ρ+

Λ

3
− k

a2
, (1.28a)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.28b)

and the conservation equation

ρ̇+ 3H (ρ+ p) = 0 . (1.29)

In these equations, H = ȧ/a is called the Hubble parameter and an over-dot

denotes a derivative with respect to time. Given the curvature k and sources

Λ, ρ and p, one can use the Friedmann equations to solve for the evolution

of a(t). Measurements suggest that the sources in our universe consists of

74% dark energy (modelled well by the cosmological constant Λ), 22% dark

matter and 4% ordinary standard-model matter. Observations also indicate

that the universe has been expanding since its beginnings, with a current

rate H ∼ 70 km · sec−1 · Mpc−1 (1 Mpc = 31 × 1012 km). The solutions

to the Friedmann equations (1.28) are in excellent agreement with these

observations.

The FLRW metric ansatz (1.25) and Einstein’s equations (1.26) form

the core of theoretical cosmology. There is a great deal more that could
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be discussed — the latest results from the Wilkinson Microwave Anisotropy

Probe (WMAP) [80] are particularly interesting — but we will restrict our-

selves here to a brief discussion, more relevant to this thesis, of domain walls

as entities that appear in the early universe.

1.4.2 Cosmological domain walls

Domain walls and kink solutions are an integral part of modern cosmology,

and their appearance in cosmological models actually predates their use in

extra-dimensional model building. In 1974, Yakov Zel’dovich, Igor Kobzarev

and Lev Okun determined that a domain structure would be expected to

appear in theories with spontaneous symmetry breaking [81]. As the uni-

verse expands its temperature decreases, and, when the temperature drops

below the critical threshold associated with a given Higgs field, that Higgs

field will assume a vacuum expectation value and spontaneously break a

symmetry. This is known as a phase transition. Because the universe is

so large, there are regions which are causally disconnected — information

has not had time to travel between them — and so there is no reason for

these separated regions to assume the same vacuum expectation value. As a

consequence, the regions, or domains, take randomly different vacuum val-

ues following the phase transition, and domain walls form at the interface

between these regions.

Note that these cosmological domain walls are two-dimensional, do not

necessarily confine any fields, and are thought of as cosmological entities,

or relics, which form in the early universe just like atoms form in the nu-

cleosynthesis process. Zel’dovich et al. found that the kink solution given

by equation (1.18) gives a good description of cosmological domain walls,

and emphasised the fact that such relics must disappear early on or else

our universe would be in a vastly different state to what we observe at the

present time.

Further study was devoted to topological defects that could arise in the

early universe; not only domain walls, but also strings and monopoles. The

types of defects that one can expect a given theory to produce are directly

related to the topology of the vacuum: the more structure there is in the

symmetry of the vacuum that is spontaneously broken by a Higgs field, the

more varied the allowed defects. Some details were worked out in 1976

by Tom Kibble [82], who concluded that, unless the standard cosmological
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model is modified (for example, by inflation28), the existence of domain walls

are ruled out due to the isotropy of the measured background radiation.

Such analyses of the phenomenology of phase transitions in gauge theories

are an important area of study, and find a wide range of application, not

just to defect formation. A discussion of such phase transitions can be found

in the paper by Andre Linde [85].29

String and domain-wall defects are inherently large objects and so one

would expect gravity to play a role in their formation. In the early 1980s,

Alexander Vilenkin found domain wall solutions consistent with the equa-

tions of general relativity [86, 87, 88], and it turns out that when gravity is

incorporated, the only solutions are time-dependent ones. Upgrading gravity

to supergravity changes the structure of spacetime and hence the formation

of domain walls and their properties; see for example Cvetič, Griffies and

Rey [89], and Cvetič and Soleng [90]. Investigations of the multitude of

defects in supergravity gives insight to defects in superstring theories, but

we will not discuss such things here.

Cosmological domain walls and domain-wall branes are generated by

similar mechanisms, and similar theoretical techniques are used to analyse

them. But the contexts within which they appear — early universe cosmol-

ogy versus models of extra dimensions, respectively — are very different.

We now return to the domain-wall branes that are the central topic of this

thesis, and discuss the critically important mechanism by which gravity can

be trapped to a brane.

1.5 The Randall-Sundrum warped metric

With the advent of the string-theory inspired ADD model, physicists started

to take seriously the idea of using branes and large extra dimensions as tools

in model building. The brane world scenario seemed to admit a realistic

implementation of the standard model, as well as providing new ways to

28Inflation is the short period of time in the very early stages of the universe when
space grows exponentially quickly, and is followed by the usual FLRW expansion. This
exponential growth can eliminate domain walls and monopoles, and also solves some other
interesting problems related to the big-bang scenario. See Guth [83] and Linde [84] for
the original proposals of inflation.

29Among other things, Linde discusses the restoration of symmetry above the phase
transition temperature, which has very interesting consequences. In particular, during
the period when the universe was hot enough such that the electroweak symmetry was
unbroken, all of the fermions, and the W and Z bosons, were massless, and the electroweak
force was long ranged, like electromagnetism is today.
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tackle old problems such as the hierarchy problem. But if brane worlds

were to offer a compelling alternative to the traditional understanding of our

universe, they would also need to make consistent predictions for cosmology.

At the end of 1998, Dvali and Henry Tye proposed a mechanism for cos-

mological inflation [91] (see footnote 28 regarding inflation) in the context

of the ADD model. Dvali and Tye’s scenario starts with multiple D-branes

in the bulk, some of which are separated by relatively large distances with

respect to the size of the extra dimensions. While slowly moving towards

each other, the three internal spatial dimensions of these branes grow ex-

ponentially — they inflate. When they get close enough, the nature of

the brane–brane interaction changes, inflation ends, and a collision occurs,

where energy is dissipated into radiation on the branes. Such a mechanism

provided a natural way to incorporate successful inflation in brane world

models.30 The next item to address would be FLRW expansion.

The effective Friedmann equations for a brane world with a single extra

dimension were derived in early 1999 by Pierre Binétruy, Cédric Deffayet

and David Langlois [93]. These equations describe the behaviour of the

effective scale factor that is seen from the perspective of a brane-localised

observer, and allow one to determine how the brane expands. Binétruy et

al. found such behaviour to be vastly different from the usual case described

by equation (1.28). In particular, the Hubble parameter in the brane-world

case depended on energy density as H2 ∼ ρ2, in contrast to the standard

dependence H2 ∼ ρ. This was a serious setback for brane world models,

but a setback that would be rectified, almost immediately, following the

discovery of the Randall-Sundrum warped metric solution.

1.5.1 The two Randall-Sundrum scenarios

In the ADD model, the hierarchy problem is solved because the fundamental

Planck scale is M∗ ∼ 1 TeV, and the observed Planck scale MPl ∼ 1019 GeV

is much larger due to the large volume of the extra dimensions. But this

solution actually introduces a new hierarchy problem: the energy scale re-

lated to the size of the extra dimensions 1/R ∼ 10−4 eV is many orders of

magnitude smaller than its natural value, being the fundamental scale M∗.

(Alternatively, the size of the extra dimensions R ∼ 1 mm is many orders

30See Arkani-Hamed, Dimopoulos, Kaloper and March-Russell [92] for further analysis
of inflation in the ADD model, including a discussion on the link to radion stabilisation.
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of magnitude larger than the natural size, corresponding to M∗, which is

10−16 mm.) In 1999, Lisa Randall and Raman Sundrum proposed a new

solution to the hierarchy problem [94], which used extra dimensions in a

different way to the ADD model, and which also provided a way to con-

fine gravity to a fundamental brane [95]. These two scenarios are known as

RS1 and RS2 respectively, and we give an overview of them here, following

closely the discussion in the original papers. Note that all variables in this

section will be redefined, so disregard any previous meaning.

The set-up of the two RS scenarios is as follows. First, the spacetime

is five-dimensional with coordinates xM = (xµ, w) and metric signature

+ − − − −. The single extra dimension w is periodic with period 2L, and

the points (xµ, w) and (xµ,−w) are identified (so the space is S1/Z2). We

take the extent of w to be −L to +L, but the reflection identity means

that the independent points are only those between 0 and L. The bulk five-

dimensional metric is GMN , with determinant G. Second, the sources in

the model consist of a bulk cosmological constant Λ, and two fundamental

branes located at the boundaries of the extra dimension; the left one is at

w = 0 and the right one at w = L. The metrics on these branes are the bulk

metric evaluated at the appropriate points:

gleft
µν (xµ) = Gµν(x

µ, 0) , (1.30a)

gright
µν (xµ) = Gµν(x

µ, L) . (1.30b)

Note that the branes are four-dimensional entities, so their metrics are only

indexed by µ and ν. The determinants of these brane metrics are gleft and

gright respectively.

This set-up, with two branes in a five-dimensional bulk, is modelled by

the action

S = Sbulk + Sleft + Sright , (1.31)

where the separate pieces are

Sbulk =

∫

d4x

∫ L

−L
dw

√
GM3

∗ (−R− 2Λ) , (1.32a)

Sleft =

∫

d4x
√−gleft [Lleft − Vleft] , (1.32b)

Sright =

∫

d4x
√

−gright [Lright − Vright] . (1.32c)
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The branes are composed of some (unspecified for now) Lagrangian densities

Lleft and Lright, and brane tensions Vleft and Vright.

Given this action, one can now find the solutions to Einstein’s equa-

tions. Randall and Sundrum assumed that the bulk metric respected four-

dimensional Poincaré invariance, in anticipation that spacetime would be

flat on the branes. The ansatz is therefore

ds2 = e−2σ(w)ηµνdx
µdxν − dw2 , (1.33)

where ηµν = diag(+1,−1,−1,−1) is the four-dimensional Minkowski metric.

The factor e−2σ(w) is known as the warp factor, and the warp factor exponent

σ(w) is solved for using some of Einstein’s equations, yielding

σ(w) = |w|
√

−Λ

6
. (1.34)

This solution requires Λ < 0 and hence the bulk spacetime is a slice of five-

dimensional Anti-de Sitter space, or AdS5. It is convenient to use a single

energy scale, denoted k, to parameterise the set of solutions that we will

get. This scale is related to the amount of curvature in the bulk, and it is

assumed that such curvature is smaller than the fundamental Planck scale:

k < M∗. The bulk cosmological constant is then

Λ = −6k2 , (1.35)

and the rest of Einstein’s equations give the relations

Vleft = −Vright = 12M3
∗ k , (1.36)

which fully constrain the model. The necessity of having these specific val-

ues for the bulk cosmological constant and brane tensions in terms of k

is known as the problem of fine tuning in the RS model. Such a tuning

was not addressed in the original proposal, and is equivalent to imposing

the condition that the effective four-dimensional spacetime has a vanishing

cosmological constant.

The next thing to do is determine the effective strength of gravity from

the four-dimensional perspective, by integrating out the extra dimension.

This can be achieved by assuming a more general form of the five-dimensional
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metric which includes the dynamics of the four-dimensional subspace; such

a metric is

ds2 = e−2σ(w)gµν(x
µ)dxµdxν − dw2 . (1.37)

Here, gµν(x
µ) describes the metric of four-dimensional slices at fixed w,

with corresponding determinant g. This is not the most general metric; for

example, it ignores the dynamics associated with the radion. Nevertheless,

using equation (1.37), one is now able to factorise out the w dependent part

of the relevant term contained in the Ricci scalar:

R(xM ) ⊃ e2σ(w)R(xµ) , (1.38)

where R(xµ) is the four-dimensional Ricci scalar made of gµν(x
µ). Then,

using the solution for the warp factor, the bulk action (1.32a) can be ex-

panded

Sbulk ⊃ −
∫

d4x

∫ L

−L
dw M3

∗ e
−2k|w|

√

−g R . (1.39)

The factor multiplying −
∫

d4x
√−g R is identified as the effective Planck

scale:

M2
Pl = M3

∗

∫ L

−L
dw e−2k|w| =

M3
∗

k

(

1 − e−2kL
)

. (1.40)

In summary, the RS set-up is specified by three parameters: the funda-

mental Planck scale M∗, the size of the extra dimension L, and the magni-

tude of the bulk curvature k. The solution for the metric in the bulk is the

warped metric, given by equations (1.33) and (1.34), but this solution is only

consistent if the sources in the model satisfy the relations given by (1.35)

and (1.36). The effective Planck scale is given by equation (1.40). We now

describe the two distinct scenarios to which this warped, five-dimensional

geometry can be applied.

Scenario one: a solution to the hierarchy problem

In the RS1 scenario [94], the two branes are given specific, physical roles.

The left brane becomes a hidden brane, while the right brane is the visible

brane, our universe, and Lright contains the standard model. Now let us

determine how four-dimensional gravity, whose dynamics come from gµν ,

couples to fields localised on these two branes. For the hidden brane at w =

0, the metric is given by equation (1.30a), which, after evaluating the warp
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factor at w = 0, yields exactly gµν . Thus, the natural scale for dimensionful

parameters in Lleft is the effective Planck scale given by equation (1.40);

there is nothing special going on here.

For the visible brane at w = L, things are drastically different, because

the metric on this brane is

gvisible
µν = e−2kLgµν , (1.41)

which includes an exponential suppressing factor. To see how this factor

modifies fields on the visible brane, consider a localised electroweak Higgs

field (see equation (1.6), but ignore the coupling of Φ to other fields), which

is described by the Lagrangian density

Lvisible ⊃ gµνvisible∂µΦ
†∂µΦ − λ

(

|Φ|2 − v2
)2
. (1.42)

Substituting this in the action for the visible brane (1.32c), and using equa-

tion (1.41) to expand the metric, we find

Svisible ⊃
∫

d4x e−4kL
√

−g
[

e2kLgµν∂µΦ
†∂µΦ − λ

(

|Φ|2 − v2
)2
]

. (1.43)

Next comes the crucial step: the usual rules of QFT, in particular the

interpretation of quantised fields as particles, require kinetic terms to be

canonically normalised. We perform such normalisations quite extensively

throughout this thesis. For the case at hand, the Higgs field must be rescaled:

Φ = ekLΦ′. This transforms the action (1.43) to

Svisible ⊃
∫

d4x
√

−g
[

gµν∂µΦ
′†∂µΦ

′ − λ

(

|Φ′|2 −
(

ve−kL
)2
)2
]

. (1.44)

We see that the new, normalised, physical Higgs field Φ′ has the same form

as the original field Φ, except that the dimensionful parameter v is replaced

by v′ = ve−kL. As Randall and Sundrum noted, this is a remarkable thing

because we can take v to have its natural value, of order M∗ ∼MPl, and yet

obtain a measured value v′ of order 1 TeV with just a mildly large kL ∼ 37.

This is a solution to the hierarchy problem.
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Scenario two: an infinitely large extra dimension

The roles of the two branes are reversed in the RS2 scenario [95], where the

left brane is the visible brane, and the right brane is hidden. In fact, the

main result of RS2 is that the right brane can be completely removed from

the set-up by making the size of the extra dimension infinite! The solution

for the warp factor, and the values of Λ and the brane tensions, remain valid

because they do not depend on the size L. Only MPl depends on L, but

such dependence is insignificant for large kL, and equation (1.40) reduces

to M2
Pl = M3

∗ /k in the limit L→ ∞.

So the warped metric solution can be used with only a single brane in

an infinite extra dimension, but does such a scenario reproduce a viable

four-dimensional theory of gravity? To check that it does, one must exam-

ine the perturbations of the five-dimensional metric in the presence of the

warped background solution, and ensure that, from the perspective of an

observer localised to the brane, these perturbations look like the usual four-

dimensional perturbations of GR. An extension of the metric (1.37) which

includes such five-dimensional perturbations Hµν(x
µ, w) is

ds2 = e−2σ(w) [ηµν +Hµν(x
µ, w)] dxµdxν − dw2 , (1.45)

and Einstein’s equations are used to determine the equation of motion for

Hµν , being

e2σ∂λ∂λHµν −H ′′
µν + 4σ′H ′

µν = 0 . (1.46)

Note that we use ηµν here to raise indices, prime denotes a derivative with

respect to w, and we are working in the transverse, traceless gauge where

∂µHµν = 0 and ηµνHµν = 0.

As we did for the domain-wall-trapped fermion, equation (1.21), the

extra-dimensional behaviour of Hµν can be determined by performing sep-

aration of variables:

Hµν(x
µ, w) =

∑

n

En(w)hnµν(x
µ) . (1.47)

Here we are doing a full generalised Fourier decomposition of Hµν , and

the sum over n is a sum over modes, also known as Kaluza-Klein modes.

The extra-dimensional profile of the nth mode is En(w), and hnµν(x
µ) is its
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corresponding four-dimensional gravity perturbation, which is assumed to

satisfy the wave equation: ∂λ∂λh
n
µν = −m2

nh
n
µν , where mn is the mass of

the mode. This separation of variables prescription is used to manipulate

equation (1.46) and obtain an equation which can be solved to find the

mode profiles En. The resulting equation is actually easier to understand

(it becomes a Schrödinger-like equation) after changing variables from w to

z using dw = e−σdz, and rescaling the mode profile by En(w) = e3σ/2Ẽn(z).

The equation that determines the extra-dimensional behaviour of gravity

perturbations is then

(

− d2

dz2
+ V (z)

)

Ẽn(z) = m2
nẼn(z) , (1.48)

where the potential is

V (z) =
15

4

k2

(1 + k|z|)2
− 3kδ(z) . (1.49)

This potential dictates the allowed mode solutions, and hence determines

how effective four-dimensional gravity behaves for observers on the brane.

V (z) is often called a volcano potential, after its pictorial representation,

and has a deep and narrow well centred at w = z = 0, which has the exact

form required to trap gravity to the brane! Such trapping is due to two

important qualitative features of V (z): the ground state mode has m0 = 0,

and, while there is a continuum of positive mass modes directly on top of

this ground state (there is no mass gap), the profiles corresponding to these

massive modes are suppressed near w = 0 due to the sides of the so-called

volcano. In Section 4.1 we shall discuss these features in more detail and

provide a plot of the volcano potential as well as the solution for the profile

Ẽ0 of the ground state mode, the zero mode, of gravity perturbations. This

zero mode is associated with the usual four-dimensional massless graviton,

and is responsible for reproducing four-dimensional GR on the brane. Mod-

ifications to GR come from the massive modes, and Randall and Sundrum

computed the effect these modes have on Newton’s law of gravity:

Ugrav(r) = GN
mAmB

r

(

1 +
1

k2r2

)

, (1.50)

where GN = k/16πM3
∗ is Newton’s constant, and mA and mB are four-
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dimensional test masses separated by a distance r. In this equation, the

leading term is due to the gravity zero mode, and the massive modes collec-

tively contribute the 1/k2r2 term. It is evident that, on the brane, gravity

looks very much like Newtonian gravity, so long as k is large enough. Ex-

periments have been performed to search for such deviations to gravity, and

the current experimental bound for the RS2 model is k > 1.6×10−2 eV [96].

Theoretically, it is expected that k is close to the fundamental Planck scale,

so it is unlikely that gravity experiments will be able to probe models with

a warped metric.

A couple of the finer details of the RS2 scenario were addressed by Ran-

dall and Sundrum. It was found that the continuum gravity modes are very

weakly coupled to matter on the brane, so it is rare for energy to be lost

to the bulk. It was also argued that the zero mode, which extends into the

extra dimension, is well isolated from the continuum modes, and so matter

on the brane has very little indirect coupling to these other modes. These

results, along with equation (1.50), demonstrated that the RS2 set-up —

a fundamental brane in an infinite extra dimension — provided a way of

realising four-dimensional gravity trapped to a subspace, a result that we

will use extensively throughout this thesis. We shall now discuss some of

the investigations that have followed from this discovery.

1.5.2 Beyond Randall-Sundrum

Since its inception, the Randall-Sundrum warped metric solution has found

itself at the centre of a large body of research; research focusing not only

on fundamental branes and string theory, but also field theoretic domain-

wall brane constructions. Such studies have been numerous and cover a

broad range of theoretical and phenomenological topics, ranging from the

early universe, cosmology and inflation, to details of particle physics and

associated model building. For general introductions to these areas, see

Rubakov [97], Csáki [98] and Pérez-Lorenzana [99]. A comprehensive review

of the use of D-branes in particle physics model building and cosmology can

be found in Kiritsis [100].

The following sections touch briefly on a selection of this work; in par-

ticular we discuss models which use the RS metric in the context of thick

branes generated by a scalar field — an idea central to this thesis. Note that

references to papers will now generally be given by category, not chronology,

and we will often omit names in the interest of brevity.



1.5. The Randall-Sundrum warped metric 53

Fixing brane cosmology

First, let us return to the problem of cosmological expansion in brane world

models, as outlined at the beginning of Section 1.5. To summarise the issue,

the effective Friedmann equations have H2 ∼ ρ2, in contrast to the usual

case where H2 ∼ ρ. Guided by the RS mechanism, it was found that cor-

rect behaviour could be obtained, at least to first order, by endowing the

brane with a tension which is fine tuned against a bulk cosmological con-

stant [101, 102, 103, 104, 105, 106]. This means that one expands the brane

localised energy density as ρ = ρb + ρs, where ρb is the brane tension (see

equation (1.36)) and ρs is a brane-localised source (like dust or radiation).

Then, assuming that the tension is much greater than the source, ρb ≫ ρs,

the Friedmann equation looks like H2 ∼ (ρb + ρs)
2 ≃ ρ2

b + 2ρbρs. Putting a

cosmological constant of the correct magnitude in the bulk, equation (1.35),

will induce a term in the Friedmann equation that cancels ρ2
b, and one is

left with the correct form H2 ∼ ρs. See Chapter 7 for the details of this

calculation, in particular Section 7.1.

Thus, by incorporating the RS idea whereby the brane has a tension

and the bulk has a cosmological constant, the original analysis of brane

cosmology was saved. In fact, such a cosmological analysis can be viewed as

an extension of the RS model to include arbitrary sources on the brane, and

to account for the effects of a non-Minkowski metric on the brane. Actually,

the RS1 set-up has some problems in the cosmological context with a wrong-

signed Friedmann equation [101], as well as stabilisation of the size of the

extra dimension (the radion problem as in the ADD model), see for example

Cline [107].

General RS studies

The RS warped metric was seen to have great potential as a solution to the

hierarchy problem, and also provided an exciting and rich new framework for

constructing models beyond the standard model. Many of the details of the

RS background, as well as branes, were uncovered, and ways of improving the

original RS set-up were proposed. The properties of bent (spatially curved)

branes were analysed [108], and a connection between the dilaton and branes,

and bulk vacuum stability was discussed [109]. Studies also focused on the

general form of the effective Einstein’s equations on the brane [110], the

consequences of different vacuum states on either side of the brane [111],
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and the reasons for having a scalar field in the five-dimensional bulk [112].

A connection between the RS scenario and the AdS/CFT correspondence31

was also discovered, see for example the papers [114, 115, 116].

The localisation of gravity to a brane is actually a much more general

phenomenon than the mechanism of the original scenario. For example,

consider a brane with a large positive tension in an infinite extra dimension

(RS2). In this background can be placed a second brane, with a smaller but

still positive tension, to which gravity is localised and on which the hierarchy

problem is solved [117]. It was also found that localisation of gravity to a

brane is a local phenomenon which does not depend on physics far out in the

bulk, and, as a consequence, the brane tension does not need to be tuned

exactly against the bulk cosmological constant [118]. Furthermore, it was

discovered that the fields of the standard model may not actually need to

be confined to a particular brane [119, 120].

Inflation and other cosmological phenomena

A large proportion of the research into brane worlds has been in the context

of cosmology, ensuring that consistent predictions are made for cosmological

phenomena. As we have already seen, the usual four-dimensional Friedmann

equations can be recovered in the basic RS set-up, but it is important to

check the extent of such validity, for example when the finite width of the

brane is taken into account [104, 121]. Other cosmological aspects of brane

world models must also be checked, like inflation and gravity wave produc-

tion; we will now briefly discuss such topics. For an introduction to brane

world cosmology see Langlois [122], for recent reviews see [123, 124], and see

Maartens [125] for a more in-depth analysis of cosmological phenomenon. A

comprehensive discussion of brane inflation can be found in Tye [126].

Initial formulation of the RS set-up placed the brane(s) at fixed locations

in the extra dimension, and determined the resulting warped background

metric. When looking at the cosmological evolution of such a model, the

background metric is generally time-dependent and can be made to expand

at the location of the brane, leading to the effective Friedmann equations.

It was realised quite early on that an alternative mechanism existed which

yielded an expanding brane: if the background is static five-dimensional

31The AdS/CFT (Anti-de Sitter/conformal field theory) correspondence is a conjecture,
made in 1997 by Juan Maldacena [113], which relates degrees of freedom between a space
and its boundary.
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Schwarzchild-Anti-de Sitter, then a moving brane samples different slices

of this background metric over time, and this looks like FLRW expansion

(or contraction) to brane localised observers [127, 128, 129]. These two

scenarios — having a stationary brane and time-dependent bulk, or moving

brane and static bulk — were shown to be equivalent and related by a

coordinate transformation [130].

Implementing inflation in RS-like models has received a lot of attention,

due mostly to the fact that brane worlds provide novel ways to solve some

of the problems in this area. General inflating brane solutions have been

found [131, 132], the issue of chaotic inflation has been discussed [133], and

the use of a bulk scalar field to drive inflation has been analysed [134].

Different ways to begin and end inflation have been proposed, with brane

collision and annihilation playing a significant role [135, 136, 137], and some

of the usual problems related to inflation are solved in these models.

One of the main experimental signatures of events that occurred in the

early stages of the universe are gravitational waves. Any theory, such as

an RS based theory, that has something to say about cosmology will make

certain predictions regarding the spectrum of gravitational waves that we

can expect to measure. The production and evolution of such waves for

brane worlds have been studied [138, 139, 140, 141, 142], and it may be

possible to constrain certain RS models after measuring gravitational waves.

A very interesting result, regarding the dimensionality of spacetime, has

been obtained by looking at the behaviour of many branes (a gas of branes)

in multiple extra dimensions. Early studies in superstring cosmology tried to

understand why, out of the nine (or ten) spatial dimensions required by the

theory, we only have three seemingly infinite ones [143]. With the advent of

D-branes, such a question seemed to find a plausible answer: a gas of branes

of various dimensionality eventually annihilate (and possibly drive inflation),

and it is natural to expect only D3-branes to survive [144, 145, 146]. There

are very few theories that can give such a reason for our spacetime being

four-dimensional.

Higher bulk dimensionality and intersecting branes

An obvious extension of the RS model is to have more than one extra spatial

dimension. But the RS warped metric solution is particular to branes with

codimension one — the bulk must have exactly one more spatial dimension
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than the brane — so it is not possible to just increase the dimensionality

of the bulk alone. Instead, the idea is to increase the dimensionalities of

the bulk and brane by the same amount, place multiple branes together in

the bulk, and identify our universe as the intersection of these branes [147].

For example, in a six-dimensional bulk spacetime, the intersection of two

D4-branes is a three-dimensional space (along with time). Since each brane

independently traps gravity, multiple branes will conspire to confine gravity

to precisely their intersection.

Constructing an intersecting brane model, or a model where multiple

branes meet at a vertex, is not as straightforward as placing the various

branes in a bulk. The angles between the branes, their tensions, and the

values of the bulk cosmological constants must obey certain relations among

themselves, in order that the configuration yield a static solution for the

warped metric [148, 149]. This is actually a generalisation of the fine tuning

problem from the original set-up.32

In addition to intersecting, codimension one branes, codimension two

branes have been analysed [150], interesting crystal-like configurations have

been discussed [151], as have vortex-shaped defects [152, 153] and higher-

dimensional extensions [154], and supergravity domain walls have been ex-

plored in multiple extra dimensions [155] and with brane junctions [156].

Nowadays, intersecting D-branes find application to string phenomenol-

ogy [157, 158], where the standard model is constructed from open strings

connected between branes in a specific configuration. Considering alterna-

tive topological structures for the bulk, it is possible to obtain constructions

where the extra dimensions form a compact hyperbolic manifold [159, 160,

161, 162].

Stabilisation of the size of compact extra dimensions

As we discussed in the context of the ADD model, the size of the extra com-

pact dimension in RS1, or the distance between the two branes, is actually

a dynamical variable, and a mechanism is needed to ensure that this size

takes an acceptable value. Goldberger and Wise proposed a solution [163]

(see [164] for an alternative) which makes use of a bulk scalar field that

32In [148], an interesting point is raised: it seems that there is always a fine tuning
relation which is independent of the angles of the brane configuration, and so such a
configuration can only form dynamically (say from branes moving around, or from a set
of scalar fields) if certain parameters in the theory conspire to allow it.
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has different quartic potentials on the two opposite branes. After finding

the background solution for this scalar field, and integrating out the extra

dimension, an effective potential for the size of this dimension is obtained.

The minimum of this potential is obtained only for a specific size of the

extra dimension, and hence provides a stabilisation mechanism. The critical

result of this mechanism is that the parameters in the potential of the bulk

scalar field do not need to be fine tuned, and the hierarchy problem can be

solved as per the original RS1 proposal.

A more comprehensive analysis of the Goldberger-Wise mechanism was

later performed [165], along with a study of the effects of the bulk scalar

on cosmology [166], and general phenomenological consequences have been

determined [167]. The mechanism has found a use in many models with

extra dimensions, see for example [168], and the general phenomenon of

stabilisation and self-tuning has since been widely studied, for example [169,

170, 171].

Smooth and thick RS

The final topic that we will discuss, that also has its roots in the RS warped

metric solution, is the use of a dynamical field to generate a domain-wall

brane, in place of the fundamental branes used in the RS set-up. Quite

simply, a domain-wall solution like that given by equation (1.18) has an

energy density which is localised at the centre of the domain wall, and

mimics the tension of a fundamental brane. From the gravity point of view,

the only real difference between these two types of branes is that the domain

wall is a smoothed out, or thick, version of the fundamental one. As a

consequence, one is able to obtain a smoothed out version of the RS warped

metric [172, 165, 173], as opposed to the sharp, or cusp-like, solution given

by equation (1.34).

When constructing smooth versions of the RS scenario, it is common to

use a scalar field to generate the domain-wall brane. In such a situation, it

is important to not only obtain an analogue of the warped metric, but to

also make sure that a four-dimensional massless gravity mode is localised

to the domain wall, and that corrections to gravity, due to massive modes,

are small. This was found to be the case [174], and we will rely heavily

on these results in this thesis. For an explicit form of a smoothed warped

metric solution, the scalar field domain-wall solution and the associated po-
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tential, see Section 4.4. It is interesting that, when using a five-dimensional

scalar field to generate the domain wall, a wider class of metric solutions

exist. This is due to the existence of a matter field in the bulk, leading

to new metric solutions which can differ from the usual scenario where the

bulk contains only a cosmological constant; for example, there can be bulk

singularities [175].

The thick domain-wall brane produced by a scalar field, and the associ-

ated smooth warped metric, in general form a family of solutions, parame-

terised by the thickness, or width, of the domain wall; for the domain wall

described by equation (1.18), this width is l = (v
√

λ/2)−1. One would

therefore expect to be able to take a controlled limit, which includes l → 0,

and which recovers the sharp RS warped metric. This is indeed the case;

see for example [165], and also [176, 177] for related analyses. See [178]

for a detailed discussion of the validity of distributional sources in general

relativity. We will discuss such limiting behaviour in Chapter 3, where we

perform a rigorous analysis of the thin kink limit, and the effect of this limit

on coupled scalars and fermions. In this chapter we also discuss the zero

mode of the domain wall — the massless Nambu-Goldstone boson associated

with zero-energy-cost translations of the kink. It is important to understand

the dynamics of this Nambu-Goldstone boson, because it is the lightest, and

hence most accessible, mode associated with the domain wall, and it may

couple to gravity in a non-trivial way [179].

A fundamental brane, a D-brane, can localise matter and gauge fields by

the stringy mechanism whereby open strings end on the brane. For domain-

wall branes, this problem must be solved in a different way, and we have

already discussed the basic mechanisms for fermion and gauge field locali-

sation, although not in the presence of gravity. Gravity alone does actually

have the ability to trap scalar fields (see Section 4.3), but not fermions, and

fermion localisation, inspired by the original mechanism due to Rubakov and

Shaposhnikov, has received much attention [180, 181, 182, 183, 184, 185].

To first order, massless chiral fermions are localised to the brane, but, since

we measure massive particles in our universe, the localised fermions must

obtain a small mass, possibly via a localised Higgs field. Whatever the

mechanism used to endow mass, in the presence of a warped metric, such

localised massive particles have a non-zero probability of escaping into the

bulk [186, 187]. We discuss effects related to this phenomena in Chapter 4.
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Many other analyses related to thick domain-wall brane worlds have been

performed. These include general localisation mechanisms [188], gravity

trapping [189, 190], issues related to quantisation of localised fields [191], col-

liding domain-walls [192, 193, 194, 195, 196], model building [197], and gen-

erating the domain-wall using a field with a non-standard kinetic term [198].

Scalar fields are also used to generate domain walls in models with supergrav-

ity and extra dimensions, see for example [155, 156]. And there is certainly

much that we have yet to discover in this rich and diverse niche of particle

physics.

1.5.3 Summary of Randall-Sundrum

The Randall-Sundrum scenario is a very simple and elegant model which has

two profound consequences: it provides a solution to the hierarchy problem,

and opens up the possibility of having extra dimensions which are infinite

in size. The set-up consists of fundamental branes, with non-zero tensions,

placed in a bulk with a cosmological constant. The solution for the bulk

gravitational metric is a slice of AdS5, a warped metric, which traps grav-

ity to the branes, and which can provide an exponential suppressing factor

in effective four-dimensional terms without the use of any unnaturally large

numbers. An immense amount of work has been inspired by the warped met-

ric solution since its discovery, ranging from inflation in cosmology, through

string-inspired model building with intersecting branes, to use in field theo-

retic model building with thick domain walls. In this thesis, we use the RS

warped metric solution exclusively to trap gravity, and build upon such a

gravitational background to produce a brane-localised standard model.

1.6 Overview of the thesis

Beginning with Nordström’s attempt at unifying electromagnetism with

scalar, relativistic gravity, we have traced the history of theoretical high-

energy physics, focusing on those aspects that are most relevant to this

thesis. Indeed, we will exploit many of the ideas and mechanisms which

have been discussed: extra dimensions, Abelian and non-Abelian gauge the-

ories, dynamical symmetry breaking, Nambu-Goldstone bosons, the Higgs

mechanism, asymptotic freedom, the standard model of particle physics in-

cluding the strong and electroweak forces, grand unification in the form of
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SU(5) and E6, domain walls, chiral fermion localisation, the Dvali-Shifman

mechanism for gauge field localisation, the FLRW metric ansatz and the

expansion of the universe, and the Randall-Sundrum warped metric.

From this rich and diverse history has emerged the standard model it-

self — a magnificent achievement with contributions from many, and which

makes predictions of unsurpassed accuracy. But, as we have pointed out,

there are still many unresolved issues in the field of high-energy physics,

and research will continue with the aim of improving even further our un-

derstanding of nature at its most fundamental level. The latter part of our

historical overview focused on one such particular direction that has seen a

great amount of recent activity: brane world models of extra dimensions. It

is in the spirit of such activity that this thesis finds its roots.

We are particularly motivated by the ability of extra dimensions to pro-

vide a different perspective on current problems, and hope that new insight

can be gained by studying brane world models. In the area of brane worlds,

we see as one of the more outstanding challenges the need to construct a com-

plete field-theoretic version of the standard model confined to a domain-wall

brane. This is to be contrasted to the string theory inspired models where

the brane is a D-brane, and the true dynamics of the theory can only be

resolved by an appeal to string theory. We would like to be able to describe

not only the dynamics of the brane, and the formation of the domain-wall

on which our universe resides, but also the mechanisms by which the matter

and gauge fields are confined. Of course, we still expect our hypothetical

domain-wall brane model to be embedded in some higher theory, but, by

describing all elements of our model using standard field theory, we will

have made a relatively conservative extension of current, well tested models.

Besides this, it is interesting to see if it can be done at all — if one can write

down a consistent, extra-dimensional extension of the standard model that

makes testable predictions for collider experiments of the near future, then

one is doing honest theoretical physics.

So that is the aim of this thesis: to consider, in the context of field

theory, all the aspects related to extending the standard model to include

an additional, infinite, spatial dimension. We will use a domain-wall brane,

generated by a scalar field which dynamically breaks a symmetry, to ensure

that gravity, gauge and matter degrees of freedom are reduced, at low en-

ergies, to four spacetime dimensions. We will construct such a model and
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analyse some of its important phenomenology, including basic cosmological

predictions. It is hoped that our work here can provide the foundations for

a full phenomenological treatment of the model that we present, and further

hope that our pointers to possible improvements can be followed. We will

now outline the structure of the rest of the thesis, and the particular content

of each chapter.

In Chapter 2 we examine a toy model where a pair of scalar fields,

charged under a U(1) ⊗ U(1) gauge symmetry, form a background domain-

wall configuration. The gauge fields themselves have a non-zero background

configuration in the presence of this domain wall, and their form corresponds

to semi-confinement of gauge fields. We introduce the perturbative stability

analysis technique, find that the normal modes of the configuration have

non-negative eigenvalues, and hence conclude that the domain wall is stable.

Gravity is incorporated into the model and a smooth version of the Randall-

Sundrum warped metric solution is obtained, coupled to the domain wall.

In this later scenario, it seems that the background solution for the gauge

fields must be identically zero.

Returning to the simplest case of generating a domain-wall brane using

a single real scalar field, we show in detail in Chapter 3 how the wall is

obtained, and determine its relationship to the fundamental brane in the

infinitely thin wall limit. Explicit expressions for the full spectrum of modes

of such a domain wall are found, corresponding to the zero mode of transla-

tion and to the massive modes which deform the background kink solution.

The symmetric modified Pöschl-Teller potential arises in this context, and

the behaviour of the zero mode in the thin kink limit is explored. We couple

both fermions and scalars to the domain wall, determine their mode spec-

trum and discuss how this spectrum looks in the thin kink limit. These

analyses demonstrate explicitly how a five-dimensional field can be dimen-

sionally reduced to a tower of effective four-dimensional modes.

We add gravity to our domain-wall brane model in Chapter 4, obtain the

Randall-Sundrum warped metric solution, and analyse how this affects the

spectrum of localised fermions and scalars. It turns out that gravity induces

a continuum in the four-dimensional spectrum, where originally there would

have been a mass gap between discrete modes. Physically, this means that

trapped low-energy modes, corresponding perhaps to standard model fields,

have a non-zero coupling to continuum bulk modes. Using a simple toy
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model, we determine the strength of such a coupling, and find that it can

be made small enough to avoid experimental constraints.

Building on the techniques which trap gravity, fermions and scalars to a

domain-wall brane, and using the Dvali-Shifman mechanism for gauge field

localisation, we construct an SU(5) grand unified, single-generation version

of the standard model in Chapter 5. In addition to the usual standard

model field content, two auxiliary scalar fields are required to generate the

domain wall and implement the Dvali-Shifman mechanism. The couplings

between these scalars and the fermions induces a split-fermion effect, which

allows the model to escape some of the usual problems with SU(5) theories.

In particular, the unrealistic fermion mass relation no longer holds, and

Higgs induced proton decay can be suppressed by ensuring a small overlap

between relevant fields. An extension of this model to larger gauge groups

is considered in Chapter 6. We find that the Dvali-Shifman mechanism

is not well suited to SO(10), and instead use E6 in combination with the

clash-of-symmetries mechanism. In such a set-up, the field content for the

scalar sector can be simplified, and only one fermion multiplet is needed, as

opposed to two in the SU(5) model.

Having dealt with the particle physics and core model building aspects,

we move on to investigate cosmological implications of domain-wall brane

models in Chapter 7. The analysis for the fundamental brane scenario is

extended to the thick brane case, and we attempt to reproduce an effective

four-dimensional FLRW metric for the fields localised to the domain wall.

For a wall of finite thickness, we find that it is not possible to define a com-

mon spacetime for all localised species of matter, and, as a consequence,

different species experience a different effective four-dimensional scale fac-

tor. This is certainly an unusual effect, and it is potentially at odds with

observation, but we leave a full phenomenological analysis to future work.

Instead, we show that by making the domain wall thin enough, this unusual

effect can be suppressed, and we are able to recover the cosmology of a

fundamental brane in the limit that the domain wall is infinitely thin.

We draw our conclusions in Chapter 8 and summarise the results that

are obtain throughout the course of this thesis. The issues that remain

outstanding are discussed, and we point to studies that would be of interest

to perform in the future. We conclude that domain-wall brane models of

an infinite extra dimension are viable extensions of the standard models of

particle physics and cosmology.
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The U(1) ⊗ U(1) toy model

Let us first put aside the ambitious idea of building a domain-wall

confined standard model, and play with a toy model which shall allow

us to develop some general techniques for extra-dimensional model build-

ing. The toy model that we will be using is a slight generalisation of a

model put forward by Rozowsky, Volkas and Wali [199]. These authors were

interested in two ideas: the clash-of-symmetries mechanism and localising

gauge fields to kink solutions. Briefly, the clash-of-symmetries mechanism

(see [39, 200, 201, 202], and also [203, 204, 205]) takes a symmetry group

G (with independent continuous and discrete symmetries) which contains

two or more isomorphic, but differently embedded, subgroups Hi. If G is

broken to each Hi in different regions of space, then at the intersection of

these regions, G is generally broken to the intersection of the Hi. Kink so-

lutions find a natural place in this mechanism, as they interpolate between

the differently broken vacua.

The toy model that we are going to study in this chapter is inspired by

the clash-of-symmetries mechanism, with the symmetry group being

G = U(1) ⊗ U(1) ⊗ Z2 , (2.1)

where the two U(1)’s are local gauge symmetries. We will refer to this model

as the U(1) ⊗ U(1) model. Its field content consists of the gauge fields, AM1
and AM2 , and a pair of scalar fields, φ1 and φ2, charged under the gauge

symmetries. The discrete groups acts as an interchange symmetry: φ1 ↔ φ2

and AM1 ↔ AM2 . Although the original toy model studied by Rozowsky et

al. lived in a four-dimensional spacetime, the extension we make here to

63
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five-dimensions (which has also been made in [202]) requires very little in

the way of modifications. Our main aim in this chapter is to study the

stability of kink solutions that one can obtain in this toy model, and the

clash-of-symmetries mechanism serves only to inspire such kink solutions.

A more sophisticated use of the mechanism is explored in Chapter 6, where

we consider an E6 model breaking to differently embedded SO(10)’s, and we

shall discuss more details regarding the clash-of-symmetries there.

Of critical importance for any domain-wall brane model is the stability

of the underlying wall itself. In general, the domain-wall configurations

that we consider are time-independent solutions to the classical equations

of motion. For example, this is true of the kink solution φDW given by

equation (1.18). Consider a set of fields χi(t, ~x) and a time-independent

background configuration formed by these fields: χBG
i (~x). Now, take small

perturbations δi(~x) and set the initial conditions for the fields χi = χBG
i +δi.

The fields χi will then evolve over time, but, if the solutions χBG
i are stable,

then χi will remain within a bounded “distance” of the time-independent

solutions. Equivalently, the energy density of the stable configuration χBG
i

is at a local (or possibly global) minimum of all possible configurations. It

is important to consider stability because we shall be interested in coupling

other fields to the domain-wall background configuration, and excitations of

these coupled fields will act to perturb the wall. Furthermore, in a quantum

theory, the fields forming the domain-wall will naturally fluctuate, and the

configuration must be resistant to such fluctuations.

In certain cases, it is possible to argue for or against stability using

topological arguments. In the case of the canonical kink solution φDW, the

associated potential (1.16) has degenerate minima at ±v which are topolog-

ically disconnected, meaning that there are no continuous transformations

which can be applied to go from one minimum to the other. Thus, by us-

ing these two values as opposing boundary conditions, the resulting kink

solution φDW cannot be transformed into any other topologically distinct

solution, such as φ = v, by any finite-energy perturbation. The energy of

this configuration is a global minimum for the topological class that it be-

longs to, and it cannot, in a sense, be “undone”. For more complicated

models, such as the toy model we study in this chapter where the domain-

wall is formed by two scalar fields, it can be difficult to find a topological

argument for stability. Instead, one can use the very general method of
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linear perturbative stability analysis. Here, the normal modes of pertur-

bations of the time-independent solutions are determined, and, if all such

modes are bounded in their time-evolution, the corresponding background

solutions are perturbatively, or locally, stable.

We have already discussed at length the confinement of gauge fields to

domain walls using the Dvali-Shifman mechanism; see Section 1.3.3. This

mechanism relies on non-perturbative aspects of non-Abelian gauge theo-

ries, and it is difficult to make quantitative statements about the modes of

the gauge fields in models that rely on this mechanism. It would be ad-

vantageous to have a gauge-field localisation mechanism which was more

tractable, and which could be analysed in a similar way to the localisation

of fermions to a kink, as discussed in Section 1.3.1. These considerations

were, as we briefly mentioned, part of the reason Rozowsky et al. wanted

to study kink solutions in the U(1) ⊗ U(1) toy model, where gauge fields

are naturally coupled to the scalar fields responsible for setting up the kink.

Unfortunately, this simple idea does not allow for gauge field localisation:

the solutions for the gauge fields have linearly rising gauge potential on one

side of the domain wall, and Meissner suppression on the other, leading

to semi-confinement of the associated fields. Nevertheless, this toy model is

still a useful theoretical tool for understanding perturbative stability, as well

as confinement of gravity using a smooth version of the Randall-Sundrum

warped metric, and these are the topic we shall work through in this chapter.

In Section 2.1 we present the details of the U(1) ⊗ U(1) model, slightly

generalised from that originally studied by Rozowsky et al., and display

the time-independent solutions for light- and space-like gauge fields. The

stability analysis method that we are going to use is outlined in Section 2.2,

followed by a full investigation demonstrating the perturbative stability of

the background scalar-gauge kink configuration. In Section 2.3 we extend

the model to include gravity, inspired by the Randall-Sundrum set-up, and

find coupled gravity-domain-wall solutions which, unfortunately, seem to

require the background gauge fields to vanish. We give a summary of the

chapter in Section 2.4.

2.1 The model and its kink solutions

The toy model studied here has symmetry group G given by equation (2.1),

a pair of five-dimensional gauge fields AMi (i = 1, 2 and M = t, x, y, z, w) and
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a pair of charged five-dimensional scalar fields φi. The discrete symmetry

acts by interchanging the fields: φ1 ↔ φ2 and AM1 ↔ AM2 . The extension to

five-dimensions, first made in [202], is a minor modification of the original

model studied by Rozowsky et al. The model features a quartic scalar

potential, coupling the scalar fields to each other, and permits domain-wall

solutions which asymptote to different degenerate minima of the potential.

The action is

S =

∫

d5x L , (2.2)

with Lagrangian density given by

L = −1

4
FMN

1 F1MN − 1

4
FMN

2 F2MN

+ (DMφ1)
∗DMφ1 + (DMφ2)

∗DMφ2 − V (φ1, φ2) .
(2.3)

The metric is Minkowski spacetime, ηMN = diag(+1,−1,−1,−1,−1), the

field strength tensor is defined as usual, FiMN = ∂MAiN − ∂NAiM , and the

covariant derivative is

DM = ∂M − iQ1A1M − iQ2A2M . (2.4)

Here, Q1 andQ2 are the charge operators associated with the two U(1) gauge

groups. Respecting the discrete Z2 interchange symmetry, the charges of the

scalar fields under U(1) ⊗ U(1) are

φ1 ∼ (e, ẽ) and φ2 ∼ (ẽ, e) , (2.5)

with e and ẽ constants. The Rozowsky et al. model took ẽ = 0, so this

is a slight generalisation, which was first introduced in [202]. The quartic

potential, which must also respect the discrete symmetry, is

V (φ1, φ2) = λ1(φ
∗
1φ1 + φ∗2φ2 − v2)2 + λ2φ

∗
1φ1φ

∗
2φ2 . (2.6)

We work in the λ1,2 > 0 parameter regime, where the degenerate global

minima are manifestly given by

|φ1| = v , φ2 = 0 and φ1 = 0 , |φ2| = v . (2.7)

The Euler-Lagrange equations of motion for the scalar and gauge fields
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are

DMDMφi = −2λ1φi
(

φ∗iφi + φ∗jφj − v2
)

− λ2φiφ
∗
jφj , (2.8a)

∂NF
NM
i = 2 Im

(

eφ∗iD
Mφi + ẽφ∗jD

Mφj
)

, (2.8b)

where i = 1 and j = 2, or i = 2 and j = 1 (this notation is to be understood

in subsequent equations, and, in particular, the summation convention for

repeated i, j indices does not hold). With the intention of finding time-

independent, domain-wall-like solutions to these equations of motion, we

assume that all fields depend only on the extra-dimension w. Following

Rozowsky et al., we also utilise a polar decomposition for the scalar fields:

φi(w) = Ri(w)eiΘi(w). The boundary conditions that are imposed on the

scalar fields should be compatible with the minima of the potential, given

by the set of equations (2.7). Since we are taking the φi to depend only

on w, we must choose some combination of these minima for the boundary

conditions as w → ±∞. The choice that allows for domain-wall solutions is

|φ1| = R1 → 0 , |φ2| = R2 → v as w → −∞ ,

|φ1| = R1 → v , |φ2| = R2 → 0 as w → ∞ ,
(2.9)

or vice-versa.

Since we are working with two gauge fields we have the freedom to choose

two gauges, one for each AMi ; the Lorentz gauge ∂MA
M
i = 0 turns out to

be the most suitable choice for both. The algebra also simplifies further if,

instead of AMi , one considers the linear combination AM
i = eAMi + ẽAMj .

Working with these choices, the field equations of motion given by (2.8)

reduce to

R′′
i = −RiηµνAµ

i Aν
i + 2λ1Ri(R

2
i +R2

j − v2) + λ2RiR
2
j , (2.10a)

Aµ
i
′′

= 2(e2 + ẽ2)R2
iAµ

i + 4eẽR2
jAµ

j , (2.10b)

Aw
i
′ = 0 , (2.10c)

Θ′
i = −Aw

i , (2.10d)

where prime denotes differentiation with respect to w, and µ, ν index t, x, y, z.

We immediately see from equation (2.10c) that the Aw
i , and hence the Awi ,

are pure gauge and do not contribute to the physics; neither do the Θi.

To further simplify the problem, we note that each gauge component
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Aµ
i exhibits the same dynamics in equation (2.10b) and appears otherwise

only as part of the four-Lorentz scalar s = ηµνAµ
i Aν

i in equation (2.10a).

Thus, the qualitative physical behaviour depends on whether the gauge field

configuration is space-like, light-like or time-like, corresponding respectively

to s < 0, s = 0 or s > 0. Expressing this behaviour as the single field Ai we

have

R′′
i = kRiA2

i + 2λ1Ri(R
2
i +R2

j − v2) + λ2RiR
2
j , (2.11a)

A′′
i = 2(e2 + ẽ2)R2

iAi + 4eẽR2
jAj , (2.11b)

where k = +1, 0, −1 for space, light- and time-like gauge fields respectively.

One can see that equation (2.11a) is consistent with the boundary condi-

tions (2.9) so long as k ≥ 0. For k = −1 the asymptotic behaviour of Ri is

oscillatory and so we discard this time-like scenario.

Now that we have equations (2.11a) and (2.11b) in hand, we proceed

to solve them, given the boundary conditions (2.9) for the Ri. In general,

these equations cannot be solved analytically and we shall resort to numerics,

but before we do that, let us make some remarks regarding the asymptotic

behaviour of the gauge fields. If we consider equation (2.11b) with i = 1 and

j = 2 and on the right side of the wall, where w → ∞, R1 → v and R2 → 0,

we see that A′′
1 → 2(e2 + ẽ2)v2A1, which has two solutions: an exponentially

growing and exponentially decaying one. Although all measurable quantities

associated with the AMi , such as the electric and magnetic field, arise through

derivatives, the exponentially growing solution still has a derivative which

grows exponentially, so we conclude that A1 is exponentially suppressed on

the right side of the wall. Then, taking i = 2 and j = 1 in equation (2.11b),

we see that A′′
2 → 0 on this same side of the domain wall; we have used the

previous result A1 → 0 to obtain this condition. As we mentioned, physical

quantities are computed through derivatives of AMi , so we are able to have

A2 asymptoting to a general linear form — an unbounded, but physical,

solution. For the other side of the wall, the conditions are interchanged:

R1 → 0, R2 → v, A2 → 0 and A1 takes a linear form.

Moving on to calculate the actual solutions, we make use of the nu-

merical relaxation-on-a-mesh technique. Here, a function f(w) is approx-

imated by a piece-wise linear function, which is equivalent to sampling

discrete values of f at fixed mesh points, and computing derivatives us-
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ing difference equations. For the case at hand, the differential equations

look like f ′′(w) = D(w), where D(w) contains functions evaluated at w,

but no derivatives. We can turn this differential equation into the dif-

ference equation 1
h2 [f(w + h) − 2f(w) + f(w − h)] = D(w), where h is

the spacing between mesh points. This equation is rearranged to obtain

f(w) = 1
2 [f(w + h) + f(w − h) − h2D(w)], which is the central equation of

the numerical technique. For small h, one computes f(w) as the average of

its neighbouring mesh points, corrected by some small amount proportional

to D(w). Such a computation is done for each mesh point (using old values

of the mesh) which constitutes a single iteration, and these new values are

used to seed the next iteration, which continues until certain convergence

criteria are reached. For solving multiple, coupled functions, it is enough

to interleave the individual iterations for each function. Usually, one must

dampen the iterations by taking a weighted average of the old mesh points

and the new ones, but, in general, this simple relaxation technique works

well, and performs efficiently enough. See Appendix B and “Numerical

Recipes in C” [206] for further details.

Using this numerical technique, we consider the light-like case first, where

k = 0. Here, the equations (2.11a) and (2.11b) semi-decouple, and the Ri

can be solved for independently of the Ai. Typical solutions are shown in

the top two plots in Figure 2.1. The scalar fields assume a typical domain-

wall configuration asymptoting to distinct minima of the potential. As the

boundary conditions for the Ri are symmetric under w reflection, the so-

lutions for these scalar fields are just reflections of each other. In the left

plot, the boundary conditions for the two gauge fields are also reflection

symmetric. In the right plot, a different boundary condition is used for A2.

As the scalar fields do not feel the presence of the gauge fields, due to the

light-like nature of the latter, the domain wall has exactly the same solution

in both of these plots.

For the space-like case, k = 1, and the scalar and gauge fields are fully

coupled. Solutions are shown in the bottom two plots in Figure 2.1 with

all parameters, except k, mimicking the top two plots. Although they look

similar, the light- and space-like plots on the left are slightly different. A

more significant difference between these two scenarios is evident in the right

plots where the boundary conditions for the two gauge fields are different.

In the space-like case the scalar fields are influenced by the gauge fields and
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Figure 2.1: Time-independent domain-wall solutions for the two scalar and two
gauge fields in the U(1)⊗U(1) model, plotted against the extra-dimension w. The
top two plots are for the light-like case, the bottom two for the space-like case. All
plots have e = 1, ẽ = 1

2 , λ1 = 1, λ2 = 2 and v = 1. The plots on the left have
symmetric boundary conditions for the gauge fields, those on the right asymmetric.
In the light-like case, the scalar fields do not feel the gauge fields and thus do not
depend on the choice of gauge field boundary conditions. This is unlike the space-
like case where the scalar fields centre on the gauge fields to restore the reflection
symmetry.

the favourable configuration is that with exact reflection symmetry. The

boundary conditions serve to simply shift the centre of the domain wall,

and the right plot on the bottom is an exact translation of the left plot. Our

result is contrary to the claim by Rozowsky et al. that asymmetric boundary

conditions in the space-like case are not equivalent to spatial translations of

the domain-wall centre.

Disregarding the technical details, there are two important qualitative

features of the solutions presented here for the U(1) ⊗ U(1) model: the

reflection symmetric scalar fields which form a domain-wall configuration,

and the partially suppressed gauge fields. This suppression of A1 under R1,

and A2 under R2, is physically similar to the Meissner effect and serves

to semi-localise the gauge fields. We make the physical interpretation of

an infinite sheet of supercurrent confined to the wall, producing a constant
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magnetic field in the region opposite the suppression.

While we have shown the existence of time-independent solutions that

depend only on the extra-dimensional coordinate, we have not established

their stability. In the next section we demonstrate that under small pertur-

bations, the solutions to equations (2.11a) and (2.11b) are in fact stable.

2.2 Stability of the background configuration

The essence of the background solutions that we have found is their time

independence, but, as part of a world that evolves over time, the fields that

produce such a background will also evolve. We must thus ensure that the

domain-wall configurations found in the previous section are not destroyed

by time-dependent perturbations. As discussed earlier, a background χBG
i

is stable if, given the initial conditions where small perturbations δi are

added to the background, the evolution of such a state remains within a

bounded distance of the original time-independent background. To deter-

mine such behaviour, the time-dependent fields χi(t, ~x) are expanded as the

background χi(~x) plus the normal mode c(~x)eiωt, and the Euler-Lagrange

equations of motion are used to obtain a equation to solve for the mode

eigenvalue ω (and the eigenfunction c(~x) if necessary). Because we are in-

terested in small perturbations, only the terms linear in c(~x) are kept, hence

this method determines perturbative, or local, stability. The background

configuration χBG
i is then perturbatively stable if all allowed eigenvalues

ω are real, because in such a case, all perturbations oscillate around the

background solution.

In this section we shall apply such a technique to show that the domain-

wall configuration presented in the previous section is perturbatively stable.

We begin by taking the time-independent background solution for each field,

including the five gauge components as part of the more convenient AM
i ,

and adding a perturbation factored as a normal mode described above. The

expansion is thus

Ri(t, ~x,w) = RBG
i (w) + ri(w)eiωrt , (2.12a)

AM
i (t, ~x,w) = ABG,M

i (w) + aMi (w)eiωat , (2.12b)

Θi(t, ~x,w) = ΘBG
i (w) + θi(w)eiωθt , (2.12c)
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where ~x = (x, y, z). To eliminate clutter in the following equations, we shall

omit the superscript BG for the background solutions. By the choice of an

explicitly complex exponential, if the mode eigenvalue ω has solutions which

are purely real, then the perturbation will be oscillatory and hence remain

bounded in time. On the other hand, if any of the solutions for ω have an

imaginary component, the exponential will blow up, signifying instability of

the original time-independent solution.

We take the original field equations (2.8), make the substitutions given

by (2.12) and simplify using the fact that the background fields satisfy equa-

tions (2.10). We work to first order in ri, a
M
i and θi, and consider only

independent perturbations,1 which decouples the resulting set of equations

to give

[

−∂2
w − ηµνAµ

i Aν
i + 2λ1(3R

2
i +R2

j − v2) + λ2R
2
j

]

ri = ω2
rri , (2.13a)

[

−∂2
w + 2(e2 + ẽ2)R2

i

]

aMi = ω2
aa
M
i , (2.13b)

[

−∂2
w − 2

R′
i

Ri
∂w

]

θi = ω2
θθi . (2.13c)

Here, the Aµ
i and the Ri are the background domain-wall solutions, and

we are going to need to substitute their numerical form, as found in the

previous section. Note that, as before, equation (2.13b) has the same form

for all of the gauge field perturbations aMi , and the gauge field background

only appears as the four-Lorentz scalar in equation (2.13a). Thus, we shall

analyse the light- and space-like scenarios separately.

Before we continue with these equations, we shall first establish a general

result which will help determine the spectrum of eigenvalues for our normal

modes. Given the equation

f ′′(w) + V (w)f ′(w) +W (w)f(w) = 0 , (2.14)

one can show that if W (w) < 0 for all w, then there exist no non-trivial

solutions for f(w) on the domain w ∈ R with f(w) → 0 as |w| → ∞. To

1By independent we mean that only one of ri, a
M
i or θi are non-zero at any one

time. It is possible to generalise the method to include coupled perturbations, where the
eigenfunction becomes the vector bi = (ri, a

M
i , θi), and the differential equation becomes

the matrix-differential equation M · bi = Ω2
bi. The solutions for the eigenvalue Ω now

correspond to both coupled and non-coupled modes. We do not perform such a generalised
analysis here.
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see this, consider large −w with f taking a vanishingly small positive value.

For non-trivial solutions, f must increase as w increases2 and so f ′ > 0. For

solutions where f becomes vanishingly small for large w, we require f ′ < 0

for some subsequent region of the w-axis. This change in the sign of the

first derivative requires f ′′ < 0 for some region, in particular we must have

f ′′ < 0 when f ′ = 0, i.e. at the turning point. But at this point we have

f ′′ = −W (w)f and since f > 0 and W (w) < 0 for all w, we have f ′′ > 0.

Thus the function is positive with a positive gradient and can never turn

back towards the w-axis. A similar argument holds when f is below the

axis; it can never turn back up. Hence there are no non-trivial bounded

solutions if W (w) < 0 for all w.

There is an alternative way of seeing this result, which relies on our expe-

rience solving Schrödinger-like equations. First, assume we have V (w) = 0

(which is actually the case for our equations (2.13a) and (2.13b)). Then

equation (2.14) looks like a Schrödinger equation with potential −W (w)

and energy equal to zero. If the potential is positive for all w, that is

W (w) < 0, then there will be no bounded solution; the potential must drop

below zero for there to be a chance of a zero-energy solution. This is the

result established in the previous paragraph. We can relax the assumption

that V (w) = 0 by noting that, via a change of variables dw̃ = Λ(w) dw with

suitable Λ(w), one can eliminate the V (w)f ′(w) term in equation (2.14) and

obtain a Schrödinger-like equation.

Now that we have established such a result, we return to the issue of

stability. Consider equation (2.13c) with f(w) = θi(w) and W (w) = ω2
θ . If

ω2
θ < 0 then one would have W (w) < 0 for all w and, by the previous result,

the only solution for θi would be the trivial one. Thus there are no negative

eigenvalues for equation (2.13c) with bounded eigenfunctions θi. Note that

the condition that the eigenfunctions θi be bounded does not imply that we

are only accepting perturbations which are bounded. The perturbation to

the background field is given in full by θi(w)eiωθt where, by definition of a

perturbation, the θi(w) factor must be small and bounded. It is the nature of

the temporal part eiωθt, and hence the eigenvalue ωθ, that determines stabil-

ity, since if solutions exist with ωθ imaginary, then the perturbations grow

exponentially over time, even though the eigenfunction θi(w) is bounded.

2Since f(−∞) = 0 there must be a region where f increases if it is to attain a finite
positive value.
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We have shown that ω2
θ ≥ 0 and so ωθ is real, thus the perturbations are

oscillatory, and Θi(w) is a stable background configuration.

For the gauge fields, inspection of equation (2.13b) yields

W (w) = ω2
a − 2(e2 + ẽ2)R2

i . (2.15)

For bounded aMi (w) we require W (w) ≥ 0 for some non-zero domain of w.

This means that we need

ω2
a ≥ 2(e2 + ẽ2)R2

i (2.16)

for some w. Since ω2
a is a constant it must be greater than or equal to the

minimum of 2(e2 + ẽ2)R2
i , hence it is non-negative. Thus we have shown

that the time-independent gauge field configuration is stable under small

time-dependent perturbations.

Following a similar argument, we look at the scalar fields Ri, and equa-

tion (2.13a) gives a bound on the eigenvalues:

ω2
r ≥ min(U(w)) , (2.17)

where

U(w) = −ηµνAµ
i Aν

i + 2λ1(3R
2
i +R2

j − v2) + λ2R
2
j . (2.18)

It is not so clear as to the sign of this function. We analyse the light-like

case first where the Aµ
i terms are absent. In this case, as can be seen from

equation (2.11a) with k = 0, the scalar field configuration, and hence U(w),

depend only on the parameters λ1, λ2 and v. Since v can be absorbed into

a rescaling of the Ri, we only have two parameters to consider. A typical

plot of the function U(w) for the two permutations of i and j is shown on

the left in Figure 2.2.

We see that U(w) > 0 for this particular choice of parameters, and so the

eigenvalues are all positive in this case. Figure 2.3 shows the minimum of

U(w) for a large range of values of λ1 and λ2. Since all minima are positive,

it must be that ω2
r > 0 and hence the background scalar field solutions in

the light-like case are stable, at least for this range of parameters.

For the space-like scenario the results are similar. The plot on the right

in Figure 2.2 shows equation (2.18) with a space-like four-Lorentz scalar:

ηµνAµ
i Aν

i < 0. Figure 2.4 shows the minimum of U(w) for various values of
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Figure 2.2: The function U(w) used to determine the eigenvalues of the ri pertur-
bation in the light- (left plot) and space-like (right plot) cases, plotted as a function
of w. The parameters and corresponding field configurations are as in the reflection
symmetric cases in Figure 2.1. There are two plots in each graph corresponding to
U(w) with i = 1, j = 2 and i = 2, j = 1.
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Figure 2.3: The minimum of the function U(w) in the light-like case plotted against
λ2. The upper curves correspond to successively larger values of λ1, which runs
from 0.2 to 2 in steps of 0.2.
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Figure 2.4: The minimum of the function U(w) in the space-like case. The plot on
the left is against λ2 with upper curves corresponding to larger values of λ1, which
runs from 0.2 to 2 in steps of 0.2. The plot on the right is against the boundary
condition for the gauge field with upper curves corresponding to larger values of v,
which runs from 0.2 to 0.8 in steps of 0.1.
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the parameters and boundary conditions for the gauge fields. It is clear that

the minima are all positive and so the time-independent background scalar

field configuration is also stable in the space-like case.

Since each field in the model permits time-independent solutions which

are independently stable, we conclude that the domain-wall configuration

as a whole is a stable one. We have also verified this analysis with explicit

numerical calculation of the possible values for the mode eigenvalue ω. They

were found to be all real in the large parameter space that we scanned.

2.3 Including gravity

Having analysed the U(1)⊗U(1) toy model in a five-dimensional Minkowski

spacetime without gravity, we now proceed to include the gravitational

effects of the domain wall, and obtain a smooth version of the Randall-

Sundrum warped metric. To make such an extension of the model, we must

include the Ricci scalar R and a bulk cosmological constant Λ in the ac-

tion, and use the curved space metric gMN to contract indices. Using the

time-like conventions of Section A.3, the action is

S =

∫

d5x
√
g

[

κ(−R− 2Λ) − 1

4
gMP gNQfMNPQ + gMN tMN − V (φa)

]

,

(2.19)

with κ = 1/16πG, G is Newton’s constant, and

fMNPQ =
∑

a

FaMNFaPQ , (2.20a)

tMN =
∑

a

(DMφa)
∗DNφa , (2.20b)

where the field content is as before, as is the definition of the covariant

derivative DM . Although we previously gave a concrete form for the scalar

field potential V (φ1, φ2), we are going to leave it unspecified for now.

By varying the action with respect to the metric components gMN , we

obtain Einstein’s equations:

GMN =
1

2κ
TMN + gMNΛ , (2.21)
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where the stress-energy tensor is (see Section A.3)

TMN = −gPQfMPNQ + 2tMN − gMNLmatter , (2.22a)

Lmatter = −1

4
gMP gNQfMNPQ + gMN tMN − V . (2.22b)

We also obtain the Euler-Lagrange equations of motion by varying the in-

dividual scalar and gauge fields, respectively:

DM

(√
g gMNDNφi

)

= −√
g
∂V

∂φ∗i
, (2.23a)

∂M
(√
g gMP gNQFiPQ

)

=
√
g gNP 2

[

e Im (φ∗iDPφi) + ẽ Im
(

φ∗jDPφj
)]

.

(2.23b)

To proceed, we must make an ansatz for the five-dimensional metric.

We have seen in the non-gravity case that the gauge fields can be light-like

or space-like, so the metric should be general enough to allow the different

coordinates to behave independently. Since we are looking for domain-wall

solutions that only depend on w, this is the only such dependence we shall

allow for in the metric, giving the ansatz

ds2 = ef(w)dt2 − eh(w)dx2 − ej(w)
(

dy2 + dz2
)

− dw2 . (2.24)

As before, we make a polar decomposition for the φi, and also assume that

the y and z components of the gauge fields are zero:

φi = Ri(w) eiΘi(w) , (2.25a)

AiM = (Ai(w), Bi(w), 0, 0, Zi(w)) . (2.25b)

Such a choice for the gauge fields should not be overly restrictive, as it still

allows for light- and space-like configurations.

We now need to determine the equations that the thirteen degrees of

freedom satisfy. To simplify the algebra we define

F = 1
2 (f + h+ 2j) , (2.26a)

F = 1
2 (−f + h+ 2j) , (2.26b)

F = 1
2 (f − h+ 2j) , (2.26c)
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and express the gauge fields, and scalar phase, in terms of the linear combi-

nations

Ai = eAi + ẽAi , (2.27a)

Bi = eBi + ẽBi , (2.27b)

Zi = eZi + ẽZi − Θ′
i . (2.27c)

As before, prime denotes differentiation with respect to w. Expanding equa-

tion (2.23b) in terms of the individual fields gives

A′′
i + F ′A′

i − 2(e2 + ẽ2)R2
iAi − 4eẽR2

jAj = 0 , (2.28a)

B′′
i + F

′
B′
i − 2(e2 + ẽ2)R2

iBi − 4eẽR2
jBj = 0 , (2.28b)

(

eR2
i + ẽR2

j

)

Zi = 0 (2.28c)

The third equation here implies Zi = 0 which we use to simplify the rest

of the equations of motion. For the scalar field we use equation (2.23a) to

obtain

R′′
i + F ′R′

i + e−fA2
iRi − e−hB2

iRi − e−iΘi
∂V

∂φ∗i
= 0 . (2.29)

After some manipulation, Einstein’s equations yield

f ′′ + 1
2f

′2 + 1
3f

′h′ + 2
3f

′j′ − 1
3h

′j′ − 1
6j

′2 − 5
3κe

−fΦ − 1
3κe

−hΨ + 1
3κΩ = 0 ,

(2.30a)

h′′ + 1
3f

′h′ − 1
3f

′j′ + 1
2h

′2 + 2
3h

′j′ − 1
6j

′2 + 1
3κe

−fΦ + 5
3κe

−hΨ + 1
3κΩ = 0 ,

(2.30b)

j′′ − 1
6f

′h′ + 1
6f

′j′ + 1
6h

′j′ + 5
6j

′2 + 1
3κe

−fΦ − 1
3κe

−hΨ + 1
3κΩ = 0 ,

(2.30c)

where

Φ = A2
1R

2
1 + A2

2R
2
2 + 1

2A
′2
1 + 1

2A
′2
2 , (2.31a)

Ψ = B2
1R

2
1 + B2

2R
2
2 + 1

2B
′2
1 + 1

2B
′2
2 , (2.31b)

Ω = R′2
1 +R′2

2 + V + 2κΛ . (2.31c)

First of all, let us discuss the coupled gravity-domain-wall solutions with-

out the gauge fields present, so we can just set them to zero. In this case,
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we can assume all three metric components are equal, f = h = j, and

equations (2.29) and (2.30) simplify to

R′′
i + 2f ′R′

i − e−iΘi
∂V

∂φ∗i
= 0 , (2.32a)

f ′′ + f ′2 + 1
3κ

[

R′2
1 +R′2

2 + V
]

+ 2
3Λ = 0 . (2.32b)

Instead of the quartic potential used in the non-gravity case, we shall

use a rather complicated form for V , which was engineered to obtain ana-

lytic domain-wall solutions; see Dando et al. [202] for details regarding such

engineering. The potential reads

V (φ1, φ2) =
β2

v2

(

1 +
v2

3κ

)

|φ1|2|φ2|2

− 2β2

v4

(

3

2
+
v2

3κ

)

|φ1|2|φ2|2
(

|φ1|2 + |φ2|2 − v2
)

+
ζβ2

2v2

(

3

2
+
v2

3κ

)

(

|φ1|2 + |φ2|2 − v2
)2
(

η +
|φ1|2 + |φ2|2 − v2

v2

)

,

(2.33)

where β, v, ζ and η are parameters which must satisfy certain relations

in order that V is able to support a domain-wall solution; again, see [202]

for details. Using this potential, the analytic solutions to equations (2.32a)

and (2.32b) are then

R1,2(w) =
v√
2

√

1 ± tanh(βw) , (2.34a)

f(w) = − v2

6κ
log (cosh(βw)) . (2.34b)

The form of Ri is that of a domain-wall, and looks qualitatively the same

as the scalar fields in the non-gravity case, Figure 2.1. The solution for

the metric component f is a smoothed out version of the Randall-Sundrum

warped metric, and we can assume the general result for such metrics: that

gravity is localised to the domain wall. For these solutions to hold, the

Randall-Sundrum fine tuning condition must be satisfied, which ensures

that the effective four-dimensional spacetime has a vanishing cosmological

constant; it is

Λ = −β
2v4

24κ2
. (2.35)
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Unfortunately, we are not able to find solutions, even numeric ones, with

any of the gauge field components non-zero. We shall make a few remarks

about why we believe such solutions do not actually exist, or are at least

difficult to find. Compare the equations for the gauge fields in the gravity-

free case, equation (2.10b), and the case with gravity, equations (2.28a)

and (2.28b). The only difference is the appearance, in the gravity case,

of the term with a single derivative of the gauge field. So we can appeal

to our argument from Section 2.1 regarding the asymptotic behaviour of

the fields, and determine that, for example, as w → ∞ we have A′′
2 +

F ′A′
2 → 0. We know that for the warped metric, derivatives of the metric

components approach a constant far from the domain wall, so it should be

safe to assume that F ′
approaches constant. Then we can solve for the

asymptotic behaviour of the gauge field:

A′
2(w → ∞) ∼ e−F . (2.36)

It does not seem as though we can recover the asymptotic behaviour that

we had in the gravity-free case, as A′
2 either exponentially grows or decays,

instead of approaching a constant. The exponentially decaying solution may

be physically acceptable (the other case is certainly not), but this requires

something like h = j = 0 so that F > 0 (note that we expect f, h, j < 0

from experience with the gauge-free case, equation (2.34b)). Such a solution

may be possible, but our numerical studies have not given any indication of

this.

Finally, one must be careful when searching for numerical solutions to

the gravity equations, as the Randall-Sundrum fine tuning condition must be

satisfied, which can be a non-trivial exercise. The scalar fields that make up

the domain wall contribute energy density which must be balanced against

the bulk cosmological constant Λ. One very general way of determining

this balance is to take the five-dimensional action (2.19), substitute in the

background configuration (which may be analytical or numerical), integrate

out the extra dimension, and choose a value for Λ such that the resulting

four-dimensional action is identically zero. This amounts to ensuring that

the four-dimensional cosmological constant is zero. If the gauge fields are

non-zero, they may contribute some value to the energy density, and hence

modify the required value of Λ. This possibility can be taken into account
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when looking for numerical solutions by solving for Λ each iteration, but

the feedback loop induced by such a calculation seems to make it difficult

to find solutions.

2.4 Conclusion

In this chapter we considered a toy model based on a U(1)⊗U(1) gauge sym-

metry, and a discrete Z2 interchange symmetry acting on a pair of charged

scalar fields. We presented the time-independent background configurations

which took the form of a domain wall with semi-confined gauge fields. This

configuration was found to be perturbatively stable: we looked at the nor-

mal modes of perturbations and found them to be oscillatory for a large

range of parameters. Gravity was then incorporated into the model, and we

presented analytic solutions, with the gauge fields set to zero, that had the

form of a domain wall coupled to a smooth version of the Randall-Sundrum

warped metric. A numerical investigation failed to obtain non-zero solutions

for any components of the gauge fields in the case with gravity, and we made

some remarks as to why we believe no solutions actually exist.

Now that we have experience solving Euler-Lagrange equations to de-

termine background configurations, and can also analyse the perturbative

stability of such configurations, we are going to move on, in the next chapter,

to study the full dynamical behaviour of the classical kink solution. This

will be an extension of the analysis of the normal modes: we perform a gen-

eralised Fourier expansion about the kink background and find a description

of the dynamics associated with each Fourier mode in terms of an effective

four-dimensional action.





Chapter 3

Kink modes and

confined matter fields

Extra spatial dimensions, if they exist, must be hidden at low ener-

gies. In the language of field theory, this means that a five-dimensional

field, say Φ(t, ~x,w), must be somehow restricted from having any dynamics

in the extra-dimension w. It is not possible to actually eliminate the w de-

gree of freedom, but it is possible to transform it into a physically different

form. Mathematically, we can perform a generalised Fourier transform on w

and write the five-dimensional field as Φ(t, ~x,w) =
∑

i φi(t, ~x)ηi(w), where

the sum is over the general Fourier modes, the φi(t, ~x) are four-dimensional

fields and the ηi(w) form the basis of the transform. After substituting

such a transformation into the action of the theory, the extra-dimension

can be integrated out, along with the ηi(w), and the w degree of freedom

originally present in Φ(t, ~x,w) is now manifest as the infinite tower of the

four-dimensional modes — the Kaluza-Klein modes. These modes form a

tower because the extra-dimensional part of the kinetic term of Φ(t, ~x,w) be-

comes a mass term after integrating over the extra dimension, and different

modes have different mass.

Such a transformation of the w degree of freedom to a tower of modes is

only going to be useful in extra-dimensional model building if the low-energy

modes of the tower are isolated. Discrete modes, whose mass is separated

by a finite amount from neighbouring modes, are modes that are completely

isolated. There also exist partially isolated, or resonant, modes, which look

almost discrete, but lie in the midst of a spectrum of a continuum of modes.

83
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The trapping of gravity is an example of this: the tower of gravity modes

for the situation of the Randall-Sundrum warped metric has no mass gap

between the lowest mode of the tower and the continuum, yet it still produces

an acceptable effective four-dimensional theory of gravity. This is because

the continuum modes are highly suppressed in the vicinity of the brane, and

the lowest mode looks almost discrete. This phenomenon is also manifest in

the models in Chapter 4, and shall be discussed in detail there; in the current

chapter we focus on the case of discrete modes. Low-mass modes that are

well isolated within a spectrum (be they discrete or resonant modes) can

be identified as the four-dimensional fields observed in our universe. The

central problem is then coming up with a mechanism which yields such a

discrete spectrum. This is precisely the role of a domain-wall brane, which

has the effect of trapping particles because it is able to induce a discrete

Kaluza-Klein mass spectrum, at least at low energies.

A useful and related picture to keep in mind is the behaviour of a particle

trapped in a square well. Here, the Schrödinger equation is used to solve

for the allowed eigen-wave-functions and associated eigen-energies of the

trapped particle, and the low-energy solutions are discrete modes with a

fixed wave-function. For energies larger than the depth of the well, the

solutions form a continuum, corresponding to a particle that is free of the

well. In the case of the domain-wall background, or kink as it shall frequently

be referred to in this chapter, a similar scenario holds true: the coupling of

the kink to another field, like Φ(t, ~x,w), induces a well-like potential, in the

extent of the extra-dimension. Utilising the general Fourier transform, the

functions ηi(w) are then the objects that feel the kink induced well, and

their solutions are found by solving a Schrödinger-like equation, yielding

a discrete (and continuous) mass spectrum for the four-dimensional fields

φi(t, ~x).

In this chapter, we provide the details of such a trapping mechanism, and

present explicit, analytic solutions for the tower of modes for both fermion

and scalar fields coupled to a kink. For fermions, we extend the mechanism

due to Rubakov and Shaposhnikov [45], which we discussed in Section 1.3.1,

to find the full set of modes that are localised, and de-localised, in the pres-

ence of the kink. For the case of a scalar field, we demonstrate that it is

possible to confine an effective four-dimensional scalar field with a quartic

potential of arbitrary shape, a technique which can be used to place the
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standard model electroweak Higgs field on the brane. We determine the

Kaluza-Klein structure of the modes of these trapped fields, which is im-

portant for two reasons. First, for a given field, the lowest mode will be

used in model building as one of the four-dimensional fields of the standard

model. Second, the next few higher modes will be the first to be discovered

in experiments (if our model is a faithful description of nature), will pro-

vide a signature of extra-dimensions, and allow us to probe parameters of

extra-dimensional models.

We are also going to study the modes associated with the kink itself. The

simple treatment in Section 1.3.1 of the canonical kink solution provided an

understanding of the background solution φDW (w), but neglected all of the

dynamics associated with the field that forms the kink. In this chapter, our

study of the kink background retains all of the degrees of freedom, which

manifest through a general Fourier transform as four-dimensional fields, in

just the same way as coupled, trapped fermion and scalar fields do. During

the course of such a detailed analysis of the kink, we discuss in detail the

kink zero mode: the massless, Nambu-Goldstone-boson degree of freedom

associated with translations of the kink background. As for the modes of

coupled fermions and scalars, the behaviour of the modes of the kink will

be important for a phenomenological analysis, as these modes allow us to

probe the structure of the domain wall.

One important aspect of a domain-wall brane is its behaviour in the

limit where it becomes infinitely thin. We expect the brane to be physically

quite thin (equivalently, be constructed out of a field with a large mass),

since we have not, so far, measured any effects related to our universe being

localised on a brane. As part of the analyses in this chapter, of kink, fermion

and scalar modes, we will determine the behaviour of the spectra of such

modes in the various limits of the width of the kink. A general result is

that the masses of the modes in the Kaluza-Klein towers are proportional

to the inverse width of the kink, and so a thin kink ensures that the gaps

in the discrete spectrum are large enough to be consistent with experiments

performed so far.

We begin in Section 3.1 by presenting the toy model which supports a

scalar kink and determine the full spectrum of its associated modes. We dis-

cuss the different limits of this model which give the scenarios with no kink, a

thick kink and a thin kink. Issues related to the dynamics of the translation
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symmetry of the kink, the kink zero mode, are discussed in detail. In Sec-

tion 3.2 we add a scalar field to the kink model, and show that the kink sets

up a symmetric modified Pöschl-Teller potential for the extra-dimensional

component of the scalar field. We determine the modes of this potential

and use them to obtain an effective four-dimensional action, discussing in

detail the thin kink limit. In Section 3.3 we analyse a fermion coupled to

the kink, present the full mode decomposition, and show that in the thin

kink limit, the massless left-handed mode is the only surviving dynamical

field. We also present an action that contains this massless four-dimensional

mode coupled to a five-dimensional field. The chapter is summarised in Sec-

tion 3.4. Appendix C contains analytic solutions of the potential well set up

by the kink, solutions which are used extensively throughout this chapter.

Note that gravity will be ignored in the analyses presented in this chap-

ter, and we work in a five-dimensional Minkowski spacetime. Chapter 4

deals with the situation where gravity is included.

3.1 The kink and its limits

The conventions that we follow in this chapter are as follows. The back-

ground spacetime is 4+ 1-dimensional Minkowski space with metric ηMN =

diag(+1,−1,−1,−1,−1). Capital Latin letters index the full space, Greek

letters index the 3 + 1-dimensional subspace, the extra-dimensional coordi-

nate is w and the coordinates are embedded as xM = (xµ, w).

We begin our analysis of the domain-wall, the kink, without any coupling

to other matter (or gauge) fields, since we would like to study the formation

and dynamics of this background entity in isolation. The kink is modelled

by a real, five-dimensional scalar field Φ(xM ), and the action is given by

SΦ =

∫

d5x

[

1

2
∂MΦ∂MΦ − V (Φ)

]

, (3.1)

with

V (Φ) =
a

4m

(

Φ2 − m3

a

)2

, (3.2)

where a is a dimensionless constant and m is the mass of Φ. The potential

V (Φ) is just the usual quartic potential, but we have expressed it using rather

unconventional parameters, due to the fact that we are in five-dimensions,
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where the dimensionality of Φ is (energy)3/2, and we want the explicit ap-

pearance of the mass of Φ in the potential. In four-dimensions, the same

potential would look like V(4d)(φ) = λ
4 (φ2 − m2

λ )2. Note the discrete Z2

symmetry Φ → −Φ which is inherent in our model, and which ensures the

topological stability of domain-wall solutions. From this action we find the

Euler-Lagrange equation for Φ to be

∂M∂MΦ −m2Φ +
a

m
Φ3 = 0 . (3.3)

With the aim of producing an effective four-dimensional theory, Φ will

initially be taken to depend only on the extra-dimensional coordinate w;

this behaviour is denoted as φc(w), where the subscript c reminds us that

φc is a solution of the classical equation of motion. This ansatz for Φ allows

for a topologically stable solution to equation (3.3), which is

φc(w) =

√

m3

a
tanh

(

mw√
2

)

. (3.4)

This classical kink solution interpolates between the Z2 degenerate minima

of the potential V (Φ). The kink has constant energy per unit volume at

every spatial point in the 3 + 1-dimensional subspace, given by

εφc
=

∫ ∞

−∞
dw

[

1

2
(∂wφc)

2 + V (φc)

]

=
2
√

2m4

3a
. (3.5)

As discussed previously, the physically interesting parameter regime of

our model is when the background configuration is that of a relatively thin

kink, corresponding to large m. To make such a statement more precise, we

write the two parameters of our model as

a = ãΛα , (3.6a)

m = m̃Λµ , (3.6b)

with ã and m̃ finite and real, and consider the limit Λ → ∞. The param-

eters α and µ can be adjusted so, in the limit of infinite Λ, a and m can

independently vanish, diverge or stay finite. Of course, only the ratio α/µ

and the individual signs of α and µ are meaningful, and we can further

constrain the ratio by considering the energy density of the kink. In the
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limit Λ → ∞, the kink energy density behaves as εφc
∼ Λ4µ−α and must

remain finite for the kink solution to be a physical one, yielding the con-

straint α = 4µ. This in turn means the amplitude of the kink has limiting

behaviour |φc(w)| ∼ Λ− 1
2
µ. The sign of the single parameter µ now describes

all possible limiting scenarios of the theory, with µ = 0 corresponding to no

limit being taken. If µ < 0 the potential V (Φ) disappears, as does the clas-

sical kink solution1 φc(w) → 0, and the action describes a massless, freely

propagating, five-dimensional scalar field. The case µ > 0 is the more inter-

esting thin kink limit. Here, the width of φc tends to zero and, to keep the

energy density finite, the height also vanishes. We will refer extensively to

these limits in the following sections.

By assuming that Φ(xM ) depends only on w we have of course lost a

lot of the dynamics of the full theory. First, since φc(w) breaks transla-

tional invariance along w, we expect a zero mode which can act to translate

the kink. Second, if we have a thick kink, we expect there to be massive

modes associated with arbitrary deformations of the kink. We now proceed

to incorporate these dynamics by performing a generalised Fourier transfor-

mation of the coordinate w.

3.1.1 Kink modes and the effective model

The classical kink background φc(w) breaks the five-dimensional Poincaré

symmetry, leaving a four-dimensional Poincaré subgroup. This makes it

natural to decompose a field into a sum of products of an extra-dimensional

component and a 3 + 1-dimensional component. For Φ(xM ), we want this

expansion to be made about the kink solution, and so we take

Φ(xµ, w) = φc(w) +
∑

i

φi(x
µ)ηi(w) , (3.7)

where ηi(w) are a fixed orthonormal basis of the extra dimension, φi(x
µ) are

four-dimensional dynamical fields, and the sum over i can in general be a

combination of discrete and continuous modes. We would like to determine

a basis ηi such that the equations of motion for the φi describe massive

scalar fields. This can be done in the standard way by taking the action for

Φ given by (3.1), substituting the expansion (3.7), using the fact that φc

1The relevant limit is limm→0 tanh(mw/
√

2)/
√
m = 0.
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Figure 3.1: Plot of the potential well, U(z) = 6 tanh2 z − 2, corresponding to the
modes of the kink. Solutions of a Schrödinger-like equation with this potential give
the extra-dimensional profiles of the kink modes, equations (3.11) and (3.12).

satisfies (3.3), discarding terms O(φiηi)
3 and higher and using integration

by parts. The effective second order action is then

SO(2)
Φ =

∫

d5x

[

a

4m
φ4
c −

m5

4a
− 1

2
φiηi

(

∂µ∂µ − ∂2
w +

3a

m
φ2
c −m2

)

φjηj

]

,

(3.8)

with implicit sums over i and j which label the modes. For the φi to satisfy

the massive Klein-Gordon equation with mass λi we require

(

− d2

dw2
+

3a

m
φ2
c −m2

)

ηi = λ2
i ηi . (3.9)

There is no sum over i on the right-hand-side of this equation.

By using the known form of φc, we can manipulate equation (3.9) to get

(

− d2

dz2
+ 6 tanh2 z − 2

)

ηi =

(

2λ2
i

m2

)

ηi , (3.10)

where we have switched to the dimensionless coordinate z = mw/
√

2. This

differential equation is a Schrödinger-like equation with a symmetric modi-

fied Pöschl-Teller potential, a plot of which is given in Figure 3.1. Analytic

solutions of this potential are known in terms of hypergeometric functions,

and, in general, there are both bound and continuum solutions. In Ap-

pendix C we present these solutions expressed in terms of regular functions,

along with their normalisation coefficients, for a more general form of the
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potential. For the kink modes at hand, equation (3.10) is equation (C.1)

with l = 2. There are two discrete, bound modes, which have eigenvalues

and eigenfunctions

λ2
0 = 0 η0(w) = E0 cosh−2 z , (3.11a)

λ2
1 =

3

2
m2 η1(w) = E1 sinh z cosh−2 z , (3.11b)

and above these bound modes lie a continuum, parameterised by the real

variable q:

λ2
q =

1

2
(q2 + 4)m2 , (3.12a)

ηq(w) = Eqe
iqz
(

3 tanh2 z − (q2 + 1) − 3iq tanh z
)

. (3.12b)

The bound modes η0,1(w) are square integrable normalised by equation (C.3)

and the continuum modes ηq(w) are delta function normalised by equa-

tion (C.6), the normalisation constants being

E0 =

√

3m

4
√

2
, E1 =

√

3m

2
√

2
, Eq =

√

m

2π
√

2(q2 + 1)(q2 + 4)
. (3.13)

Armed with the basis ηi, we return to the analysis of the full dynamics

of the kink. Expanding the original action (3.1) with Φ decomposed in the

ηi basis and integrating over the extra dimension gives

SΦ =

∫

d4x [−εφc
+ Lφ] , (3.14)

where the φ kinetic, mass and self-coupling terms are

Lφ =
1

2
∂µφ0∂µφ0 +

1

2
∂µφ1∂µφ1 −

3

4
m2φ2

1

+

∫ ∞

−∞
dq

[

1

2
∂µφ∗q∂µφq −

1

4
(q2 + 4)m2φ∗qφq

]

− κ
(3)
ijkφiφjφk − κ

(4)
ijklφiφjφkφl . (3.15)

The fields φ0,1(x
µ) are the real valued scalars associated with the two bound

modes η0,1(w). The integration over q is over the complex valued continuum

modes φq(x
µ) associated with ηq(w). Note that φ−q = φ∗q and η−q = η∗q

and so this integral is real. The effective cubic and quartic self-interaction
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couplings are

κ
(3)
ijk =

a

m

∫ ∞

−∞
φcηiηjηk dw , (3.16a)

κ
(4)
ijkl =

a

4m

∫ ∞

−∞
ηiηjηkηl dw . (3.16b)

For brevity, the indices i, j, k, l label bound modes, continuum modes or a

mixture of both, and the sum over these labels is implied in equation (3.15).

The couplings κ can be computed as their integrands are known; some are

zero due to parity, some are non-zero.

Equations (3.14) and (3.15) are exact manipulations of the original five-

dimensional model (3.1), and provide a description in a basis useful for

investigating the effective four-dimensional behaviour. The bound modes

are reminiscent of the Kaluza-Klein modes one obtains in compact extra

dimensions, but, in the case at hand, the gaps in the mass spectrum are not

uniform. Furthermore, the continuum modes do not have analogues in the

Kaluza-Klein model and are not strictly four-dimensional, but instead form

a pseudo-five-dimensional field with reduced degrees of freedom.

Consider briefly the renormalisability of the original five-dimensional ac-

tion given by equation (3.1). The quartic term coming from the potential,
a

4mΦ4, has a coefficient with negative mass-dimensionality, rendering the

theory non-renormalisable. By choosing to allow such a term, we are no

longer restricted (like we are in the usual, four-dimensional, renormalis-

able case) to writing down terms below a certain order, and we could quite

happily extend the potential beyond quartic order. But the manipulations

which bring us to the four-dimensional level, given by equation (3.15), do

in fact leave us with a renormalisable theory if we truncate the action to

just the bound states. This renormalisability of the bound states may be a

useful criterion for restricting the types of terms that one begins with in the

five-dimensional (or higher-dimensional) action.

3.1.2 Limiting behaviour of the kink

Now that we have such a reformulation of the kink model, we are in a position

to analyse the full dynamics of the system for the three different limits of the

mass m. Following our previous parameterisation, for µ < 0 there is no kink

and the basis ηi(w) is replaced by a standard complex Fourier expansion. All
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the dynamical components are packaged together by the Fourier transform

and it is no longer sensible to perform the w integral. Instead one should

consider Φ(xM ) as a free, massless, five-dimensional field.

For the thick kink case when µ = 0, the spectrum consists of the energy

density of the integrated kink, a zero mode, a massive bound mode and

a continuum of massive complex scalars. These effective four-dimensional

fields are self-coupled and coupled amongst each other via cubic and quartic

interactions. In particular, the zero mode φ0(x
µ) and massive bound mode

φ1(x
µ) each have a potential:

V0(φ0) =
9
√

2 a

140
φ4

0 , (3.17a)

V1(φ1) =
3

2
m2φ2

1 +
3π

32

√

3a

2
√

2
mφ3

1 +
9
√

2 a

280
φ4

1 , (3.17b)

which are due to the non-zero values of κ
(4)
0000, κ

(3)
111 and κ

(4)
1111. Similarly, we

can compute the coupling potential amongst these two bound modes to get

V0,1(φ0, φ1) =
9π

64

√

3a

2
√

2
mφ2

0φ1 +
9
√

2 a

70
φ2

0φ
2
1 . (3.18)

Note that while φ0 has no mass term it does have a non-zero potential,

making it energetically unfavourable to excite the field, even though it costs

zero energy to translate the kink. We can account for this unexpected

result by recalling that η0 corresponds to infinitesimal translations of φc.

Adding any small but finite multiple of η0 to φc will, to first order, perform

a translation, but to higher order it will deform the kink. The energy cost

of these higher order deformations are described by the potential V0.
2 For

completeness, we point out that while V1 has a cubic term, the potential has

only one extremum, which is a minimum at φ1 = 0. Any other location for

the minimum would indicate that the kink solution is unstable.

We now move on to discuss the thin kink limit, where µ > 0 and both m

2In constructing the basis ηi we linearised the action about the kink background,
equation (3.8), and so it may seem that we are in error keeping the cubic and quartic
terms in equation (3.17). But we are in fact allowed to keep such higher order terms, and
they have no further corrections at the classical level. This is because, regardless of how
we came to determine it, ηi forms a complete basis in the sense that any function of w can
be faithfully represented by a particular linear combination of the ηi’s. Using this basis,
exact manipulations of the original five-dimensional action lead us to equation (3.17).
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and a tend to infinity. In such a scenario, the kink energy density remains

finite, but the masses of the bound mode φ1 and the continuum modes φq go

like m. Recall that these massive modes correspond to deformations in the

kink, and as the kink gets thinner it also gets more rigid, requiring a larger

amount of energy for a given deformation. The dynamics of the massive

modes are thus frozen out, as they are no longer able to deform the kink

without possessing infinite energy.

This argument can also be applied, perhaps näıvely, to the translation

zero mode φ0, which gets frozen out in the thin kink limit, despite remaining

massless, because its corresponding potential V0 becomes infinitely steep.

This can be understood from the arguments given above: for an infinitely

rigid kink, the higher order deformations due to the zero mode are forbidden

and the only physical resolution is to remove the dynamics of this mode. So,

in the thin kink limit, we are left with only the kink energy density εφc
in

the effective four-dimensional action.

At this point it seems we may have come to a counter-intuitive, and

perhaps incorrect, conclusion regarding the zero mode φ0. After all, even an

infinitely thin kink can still be translated, and the translated configuration

has the same energy density as the original configuration. Thus, it seems

there should still exist a dynamical zero mode in the thin kink limit. We

have not come to a definite conclusion regarding this matter, and the follow-

ing subsection is devoted to a lengthy and detailed discussion of the issues

involved. Recall that we are ignoring gravity in our analysis; in the gravity

case, there are additional complications which arise from the interaction of

the kink zero mode with a scalar degree of freedom of the metric [179].

3.1.3 Is the kink zero mode really frozen out?

The thin kink limit, as characterised by the width going to zero, or m→ ∞,

while keeping the energy density εφc
finite, still retains the property that it

can be continuously translated to a shifted configuration that possesses an

equivalent energy density. From Goldstone’s theorem, there should exist a

massless scalar field corresponding to the spontaneously broken, continuous

symmetry of translation invariance.3 It is unexpected then, that in this

3Although, Rajaraman makes the remark, on page 151 of his book [46], that the kink
zero mode η0 has nothing to do with massless fields, and does not correspond to a Nambu-
Goldstone boson! He points out that Nambu-Goldstone bosons are the lowest state of a
continuum of modes, but, in the case of the kink, η0 corresponds to a bound state.
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limit, the four-dimensional remnant of the translation symmetry, the zero

mode φ0, is frozen out, and the symmetry has no observable consequence at

the effective four-dimensional level.

Before we launch into a discussion of this supposed contradiction, let us

summarise what we believe the result to be: yes, the four-dimensional mode

φ0 is frozen out in the thin kink limit because, in this limit, the kink becomes

infinitely rigid, and hence does not support perturbations of any kind. With

no dynamical degrees of freedom left, the translation symmetry is manifest,

at the four-dimensional level, by the zero energy cost associated with a

specific constant field configuration (constant in xµ) which has no physical

consequence. This constant configuration is equivalent to shifting the mode

expansion basis ηi(w) to align it with the translated kink profile. We discuss

this in detail in the following sections, and include an identification of the

composite mode which is responsible for finite translations.

To give contrast to our result that the zero mode is frozen out, we also

present the collective coordinate expansion, which treats the zero mode dif-

ferently from the massive modes. In the effective four-dimensional action

that results, the zero mode is coupled to the massive modes by derivative

couplings only, and, in the limit where the massive modes decouple from the

model, the zero mode still remains. We mention a reason why this particu-

lar analysis may be inequivalent to our mode expansion, and summarise the

issue with a discussion of the difference between energy density and rigidity.

No dynamical degrees of freedom with a canonical kinetic term

Perhaps there exists a dynamical degree of freedom, call it ρ0(x
µ), which is

a certain linear combination of the states we have already identified, namely

the set of fields φ0,1,q, and which survives in the infinitely thin kink limit.

To follow this argument through, we assume that such a mode has a definite

extra-dimensional profile, which may be unwarranted, but seems to be a

reasonable assumption. If such a mode ρ0 exists, then its extra-dimensional

profile can be written as a linear combination of the basis that we have

already found, η0,1,q (by virtue that the η0,1,q form a complete set for the

extra-dimension w), and the same coefficients of this linear combination are

then used to write ρ0 in terms of φ0,1,q. We do not actually need to worry

about the extra-dimensional profile of ρ0, we just assume that it has one,

and so ρ0 manifests as a linear combination of the fields φ0,1,q, which we
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write as

ρ0 = α0φ0 + β0φ1 +

∫

γ∗0(q)φq dq , (3.19)

where α0, β0 and γ0(q) are the coefficients of the combination. We proceed

to show that there are no choices for these coefficients which yield a field ρ0

whose dynamics survive in the thin kink limit. We do this by looking at the

action for ρ0, and show that, if ρ0 is forced to have a canonical kinetic term,

its potential has coefficients which tend to infinity in the thin kink limit.

To determine the effective action for ρ0 we will need to invert equa-

tion (3.19) to express φ0,1,q in terms of ρ0. To do this properly, we need

a complete basis which includes ρ0; call it ρ0,n,q, where n labels the extra

bound modes and q labels the extra continuum modes needed to complete

the basis. Then the inverse of (3.19) is

φ0 = α0ρ0 +
∑

n

αnρn +

∫

αrρr dr , (3.20a)

φ1 = β0ρ0 +
∑

n

βnρn +

∫

βrρr dr , (3.20b)

φq = γ0(q)ρ0 +
∑

n

γn(q)ρn +

∫

γr(q)ρr dr . (3.20c)

Substituting this expansion in the action (3.14) gives the full action for the

new fields ρ0,n,q. We are only interested in the terms that describe ρ0 as a

self-interacting field that does not couple to any of the other fields. Keeping

just these terms, the effective action is

Sρ0 =

∫

d4x

[

1

2
A(kin)∂µρ0∂µρ0 −

m2

2
A(2)ρ2

0 −m
√
aA(3)ρ3

0 − aA(4)ρ4
0

]

,

(3.21)

where

A(kin) = α2
0 + β2

0 +

∫

γ∗0(q)γ0(q) dq , (3.22a)

A(2) =
3

2
β2

0 +

∫
(

1

2
(q2 + 4)γ∗0(q)γ0(q)

)

dq , (3.22b)

A(3) = (terms with at least one factor of β0 or γ0(q)) , (3.22c)

A(4) =
9
√

2

140
α4

0 + (terms with at least one factor of β0 or γ0(q)) . (3.22d)
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In the thin kink limit, where m → ∞ and a → ∞ but m4/a is kept

finite, the mass of ρ0 will tend to infinity unless A(2) vanishes. For A(2) to

be identically zero, we require β0 = 0 and γ0(q) = 0. The requirement that

the kinetic term for ρ0 be of the canonical form implies A(kin) = 1, and thus

α0 = 1 (hence ρ0 = φ0), and then the coefficient of the quartic term ρ4
0 is

9
√

2 a/140 which freezes out ρ0 in the thin kink limit.

Alternatively, we can choose β0 and γ0(q) such that A(2) is not identically

zero, but in the thin kink limit tends to zero in order to keep m2A(2) finite.

Then, in this limit, β0 → 0 and γ0(q) → 0 and so α0 → 1. The quartic

coefficient A(4) is then dominated by the α4
0 term which, as before, tends to

infinity in the thin kink limit and freezes out ρ0. Thus, there is no linear

combination of the fields φ0,1,q, and hence no scalar degree of freedom, which

has a canonical kinetic term, and whose dynamics survive in the infinitely

thin kink limit.

This result is perhaps not so surprising: we have tried to take linear

combinations of φ0 as well as the massive fields φ1,q to make a new massless

one, and found that the only such field is actually φ0. One could extend this

analysis to include non-canonical kinetic terms for ρ0, and possibly allow

non-linear combinations of the fields φ0,1,q. But note that, if ρ0 has an

extra-dimensional profile, it can always be written as a linear combination

of the basis, so the analysis presented here is actually quite general.

Manifestation of translation symmetry as a non-dynamical shift

The energy density εφc
of the kink configuration φc(w) is independent of the

location of the kink along the w-dimension. Thus, for a linear combination of

the basis η0,1,q which just translates the kink profile, the corresponding linear

combination of φ0,1,q should have zero energy density. This statement needs

to be made more precise, as we have just shown in the previous subsection

that there is no linear combination of φ0,1,q that has a vanishing potential.

Instead, there exists a linear combination with a potential that vanishes only

at a specific, constant (in xµ) value of the field, corresponding to a shift of

the kink. We proceed to determine this linear combination.

Consider the expansion

Φ(xM ) = φc(w) + ρ0(x
µ)s0(w) , (3.23)

where s0(w) is the profile of a finite shift of the kink, and ρ0(x
µ) is the
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corresponding four-dimensional field (unrelated to the previous ρ0). For a

given fixed shift of the kink ∆w, we want to have the relation

ρ0(x
µ)s0(w) = φc(w + ∆w) − φc(w) . (3.24)

For this to be true, ρ0 must be an arbitrary constant, which we fix by

normalising the profile
∫

s20(w) dw = 1. This gives

s0(w) =
√
mSσ0(w) , (3.25)

with

S =
1

25/4

√

tanh ∆z

∆z − tanh ∆z
, (3.26a)

σ0(w) =
tanh ∆z cosh−2 z

1 + tanh ∆z tanh z
. (3.26b)

We have z = mw/
√

2 and ∆z = m∆w/
√

2. For the combination ρ0s0 to

actually shift φc by an amount ∆w, as given by (3.24), it is required that

the field ρ0 be a particular constant:

ρ0(x
µ) =

m√
aS

. (3.27)

We now want to treat the field ρ0 as a dynamical four-dimensional scalar

degree of freedom. It will correspond to finite translations of the kink profile

and we are interested in its behaviour in the thin kink limit. One can

write ρ0 as a linear combination of φ0,1,q, which can be determined from the

linear combination needed to write s0 in terms of η0,1,q. It is then possible

to determine the effective action for ρ0 by substituting this combination

in the Lagrangian (3.15). A simpler way to obtain the same result is to

substitute (3.23) into the original five-dimensional action (3.1) and integrate

out the extra dimension. The result is

Sρ0 =

∫

d4x

[

−εφc
+

1

2
∂µρ0∂µρ0 − Vρ0(ρ0)

]

, (3.28)

with the effective potential

Vρ0(ρ0) =

(

5

2 tanh2 ∆z
− 5 tanh ∆z

6(∆z − tanh ∆z)
− 3

2

)

ρ2
0

(√
aSρ0 −m

)2
.

(3.29)
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Note that the potential for ρ0 has two minima: one at ρ0 = 0 and the

other at precisely the value corresponding to the finite translation, given

by (3.27). The energy density associated with ρ0 is

ερ0 =
1

2
(∂tρ0)

2 +
1

2
(∇ρ0)

2 + Vρ0(ρ0) . (3.30)

Any dynamical behaviour of ρ0 has non-zero, positive energy density. This

energy density will vanish only when ρ0 = 0 or ρ0 is the constant (3.27) at

all locations in the four-dimensional spacetime. This is the manifestation

of the translation symmetry of the kink. The field ρ0, or, equivalently, a

specific linear combination of φ0,1,q, can assume this constant value at each

point xµ with zero energy cost. It is possible to show that the situation

where the fields assume this value is equivalent to the situation where the

original basis η0,1,q is shifted by the amount ∆w.

So what happens to ρ0 in the thin kink limit? The finite kink-translations

that it represents should still be valid, and this is indeed the case. But these

translations can only be made if the entire kink is shifted at once, corre-

sponding to ρ0 being a constant. This is because, in the thin kink limit, the

potential Vρ0 becomes infinitely steep and the dynamics of ρ0 are frozen out,

just as the φ0 mode is. The only remnant of the translation symmetry at the

effective, four-dimensional level is the fact that ρ0 is allowed to be a certain

constant value everywhere with no energy cost. But such a constant value

has no physical consequence, and so the translation symmetry is hidden at

the four-dimensional level. From this result, we make the interpretation that

an infinitely thin kink is synonymous with an infinitely rigid one. Or, at the

very least, this is true of the particular kink solution that we are studying

in this chapter.

Collective coordinate expansion

There is an alternative way of expanding the five-dimensional field Φ, as

opposed to equation (3.7), which explicitly accounts for translation invari-

ance; it is known as the collective coordinate expansion; see Chapter 8 of

Rajaraman [46]. (Such an expansion may not actually be completely general

when the theory is considered to all orders, a point which shall be discussed

later.) To illustrate the idea of a collective coordinate, consider a model

with a complex scalar field χ(t, ~x) that respects a global U(1) symmetry
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χ → eiαχ. For any configuration of χ, the configuration eiαχ describes the

same physics, has the same energy, and there will be a zero mode associ-

ated with such a symmetry. If we think of χ as the sum of a real field and

an imaginary field, then multiplication by a phase mixes these two fields

together, and the resulting real and imaginary parts are non-trivial combi-

nations of their original counterparts. The idea of a collective coordinate is

to change variables, or, in the case of field theory, to rewrite the fields, such

that the action of the symmetry affects only a single field.

For the example of the U(1) symmetry, and the complex field χ, one first

changes to polar fields via

χ(t, ~x) = χr(t, ~x)eiχθ(t,~x) . (3.31)

Now the U(1) symmetry acts by χθ → χθ + α, which is simpler than the

original transformation because χr is left untouched. But the entity χθ(t, ~x)

is a field, and is hence an infinite set of time-dependent variables, one at each

point ~x in space. The action of the U(1) symmetry adds the constant α to

all of these variables, so we have not completely separated out the degree

of freedom which corresponds precisely to the symmetry. We can actually

arrange for the U(1) symmetry to affect only a single variable. The idea is

to collect, or package, the constant component of the field χθ into a single

variable:

χ0(t) =
1

(volume)

∫

χθ(t, ~x)d~x . (3.32)

Here, χ0(t) is the collective coordinate: a single variable which is the col-

lection of the infinitely many variables χθ(t, ~x) at different points in space

(see equation (8.31) of Rajaraman [46]). We define the left-over field (or

variables) as χθ̃(t, ~x) = χθ(t, ~x) − χ0(t). The action of the U(1) symmetry

is then χ0 → χ0 + α, and χθ̃ and χr are invariant.

We have just presented an example of an explicit collective coordinate,

so called because χ0(t) has an explicit formulation given by equation (3.32).

Such a change of fields, from the complex valued χ to the real valued triple

(χ0, χr, χθ̃), is useful because the dynamics of the U(1) symmetry will not

manifest in the analysis of χr and χθ̃.

Applying this idea to the translation symmetry of the kink, one aims

to change fields such that the action of the translation affects only a single

field. It turns out that one cannot explicitly define such a field, as was done
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with χ0, and so the definition is an implicit one, hence we work with implicit

collective coordinates. In our analysis here, we follow closely Burnier and

Zuleta [207]; see also Section 8.3 of Rajaraman [46].

Instead of our original basis expansion (3.7), consider the implicit col-

lective coordinate expansion

Φ(xM ) = φc (w − Z(xµ)) +
∑

i6=0

φ̃i(x
µ)ηi (w − Z(xµ)) , (3.33)

where Z(xµ) is the implicitly defined collective coordinate, and replaces the

zero mode φ0(x
µ), hence the sum over i does not include the mode η0.

Note that the η1,q are the same as before, but their corresponding four-

dimensional partner fields φ̃1,q are in general different from the original φ1,q.

This definition is now used to expand the action (3.1) to get

SΦ =

∫

d4x
{

− εφc
+

1

2
εφc

∂µZ∂µZ +
1

2
∂µφ̃1∂µφ̃1 −

3

4
m2φ̃2

1

+

∫ ∞

−∞
dq

[

1

2
∂µφ̃∗q∂µφ̃q −

1

4
(q2 + 4)m2φ̃∗q φ̃q

]

−
∑

i,j,k 6=0

κ
(3)
ijkφ̃iφ̃j φ̃k −

∑

i,j,k,l 6=0

κ
(4)
ijklφ̃iφ̃jφ̃kφ̃l

+
∑

i6=0

π
(a)
i φ̃i∂

µZ∂µZ +
∑

i,j 6=0

π
(b)
ij φ̃iφ̃j∂

µZ∂µZ

+
∑

i,j 6=0

π
(c)
ij φ̃i∂

µφ̃j∂µZ
}

, (3.34)

where κ
(3)
ijk and κ

(4)
ijkl are defined as per (3.16), and

π
(a)
i =

∫ ∞

−∞
φ′cη

′
i dw , (3.35a)

π
(b)
ij =

1

2

∫ ∞

−∞
η′iη

′
j dw , (3.35b)

π
(c)
ij =

∫ ∞

−∞
ηiη

′
j dw . (3.35c)

The effective four-dimensional action (3.34) is to be compared with the

action obtained using our original expansion, equations (3.14) and (3.15).

The terms describing the massive modes φ̃1,q and their self-interactions (with
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coefficients κ(3,4)) are equivalent to the description of the fields φ1,q. The

differences between the two formalisms are in the description of the zero

mode. In the case at hand, the field Z does not have any potential terms,

and couples to the massive modes φ̃1,q only via derivatives ∂µZ. When the

thin kink limit is taken, all of the massive modes are frozen out, along with

their coupling to derivatives of Z, and we are left with the action

SΦ =

∫

d4x

[

−εφc
+

1

2
εφc

∂µZ∂µZ

]

. (3.36)

Recall that the energy density εφc
remains finite in the thin kink limit, so,

after the field redefinition Z̃ =
√
εφc

Z, we see that this action describes a

single, four-dimensional, massless scalar field.

The question now is: are the two formalisms for expanding Φ — the mode

expansion (3.7) and the implicit collective coordinate expansion (3.33) —

equivalent or inequivalent? If they are equivalent, which is the correct pic-

ture? Which expansion allows us to correctly interpret the zero mode as a

physical field, with associated interactions? Is it φ0(x
µ) or Z̃(xµ) that man-

ifests in the effective four-dimensional theory? If they are equivalent, and if

we believe that Z must be defined implicitly, through equation (3.33), then

we should not be able to find any explicit combination, linear or otherwise,

of φ0,1,q which behaves as Z does. If this is the case, then what is wrong

with our mode expansion (3.7), which should provide a completely general

way of expanding an arbitrary five-dimensional field Φ?

We suspect that maybe these two formalisms are actually inequiva-

lent. Our main motivation for this suspicion is that the collective coor-

dinate expansion (3.33) is not general enough to express an arbitrary field

Φ(xM ). For example, there are no choices of Z(xµ) and φ̃1,q which yield

Φ(xM ) = ω(xµ)η0(w) for any ω(xµ). If there were, then we could write

ω(xµ)η0(w) = φc(w − Z) +
∑

i6=0

φ̃i(x
µ)ηi(w − Z) . (3.37)

Keep in mind that Z may depend on xµ, we have just neglected to write this

explicitly to keep the equation clear. Now, multiply through by η0(w − Z)
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and integrate over w:

ω(xµ)

∫

η0(w)η0(w − Z) dw =

∫

φc(w − Z)η0(w − Z) dw

+
∑

i6=0

φ̃i(x
µ)

∫

ηi(w − Z)η0(w − Z) dw .

(3.38)

There is the freedom to shift the integrals on the right-hand-side by Z, and

then, because η0 is orthogonal to φc and η1,q, we have

ω(xµ)

∫

η0(w)η0(w − Z(xµ)) dw = 0 , (3.39)

Since the integral in this equation will always be positive, regardless of the

form of Z(xµ), it must be that ω(xµ) = 0. Hence we have shown that the

implicit collective coordinate expansion (3.33) cannot faithfully represent all

possible forms of Φ, and so is less general than the mode expansion (3.7). In

fact, our argument here demonstrates that by using collective coordinates,

one has forbidden excitations corresponding to the zero mode η0 from the

outset!

The implicit collective coordinate expansion (3.33) may be useful in cer-

tain contexts, for example, where one is only interested in expanding a model

up to a given order in perturbation theory. This is actually the case for the

discussions in Rajaraman [46], where models are quantised around a classi-

cal ground state (like the kink), and perturbation theory is used to analyse

the quantum excitations. In the scenario presented in this chapter, we con-

sider the full, non-linear theory exactly, and in a classical context only, so

perhaps it is not suitable to use the collective coordinate approach here.

Summary of unresolved issues regarding the kink zero mode

We strongly suspect that our exact treatment of the expansion of the modes

of the kink, given by equation (3.7), is the correct way of analysing the dy-

namics of the kink. Furthermore, we believe that the zero mode φ0 freezes

out in the thin kink limit, as do all the massive fields. The only rem-

nant of the translation symmetry at the four-dimensional level is a certain

combination of fields taking on a certain constant value with no energy cost,

corresponding to a finite shift of the infinitely thin kink. Such a constant con-
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figuration has no physical consequence, and so the effective four-dimensional

action contains only the energy density εφc
. For the rest of this chapter, we

are going to assume that this is in fact what happens.

Finally, we would like to point out that it is not clear that energy den-

sity and rigidity have a definite relationship, at least in the context of a

kink. The energy density is defined by equation (3.5), and is an effective

four-dimensional quantity accounting for the energy in the background kink

configuration per unit four-volume. This is sometimes referred to as the

tension of the brane, particularly when talking about fundamental branes.

Calling the energy density the tension makes it quite easy to confuse energy

density and rigidity. We would be inclined to suggest that rigidity is not the

same as energy density (or tension), but is instead related to the malleability

of the brane. For the kink considered in this chapter, the rigidity is perhaps

related to the mass of the scalar field which forms the domain-wall, Φ, and

when this mass is taken to infinity, it becomes impossible to deform the kink

solution, even though the energy density is finite. One avenue to pursue,

which may resolve this issue more clearly, is to consider a kink model with

more parameters (more than just a and m) and see if one can arrange to

have a finite energy density, zero width, and also a finite rigidity. In such

a scenario, we would expect the zero mode associated with translations to

survive in the thin kink limit.

3.2 Adding a scalar field

We have so far performed an analysis of the kink and its modes in isolation.

As stated previously, we aim to use the properties of the domain wall to

dynamically trap five-dimensional fields to a brane and create an effective

four-dimensional model. We can achieve this if the kink is coupled to a

different five-dimensional field and projects out a set of modes with the

lowest mode separated from the rest by a significant mass gap. Then, if we

are at energies where only the lowest bound state can be excited, the degree

of freedom of propagation along the extra dimension has been lost and the

bound mode is confined.

3.2.1 Scalar modes

The simplest place to start is to take another five-dimensional scalar field

Ξ(xM ) and couple it to the kink field. The action describing this model is the
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sum of the action for Φ and an action for the new field Ξ, SΦ+Ξ = SΦ +SΞ,

where

SΞ =

∫

d5x

[

1

2
∂MΞ∂MΞ − ab(b+ 1)

4m
Φ2Ξ2 −W (Ξ)

]

, (3.40)

with potential

W (Ξ) =
n2

2
Ξ2 +

c

4n
Ξ4 . (3.41)

The parameters b and c are dimensionless, while the dimensionful parameter

n is the mass of Ξ. We have chosen a strange looking Yukawa coupling

constant for the Φ2Ξ2 term because b has a physical meaning, which we

elaborate on later. Note that the discrete Z2 symmetry Φ → −Φ is respected

by this new action, as is the additional, independent Z2 symmetry Ξ → −Ξ.

Following the analysis for the kink modes, we perform the general Fourier

expansion

Ξ(xM ) =
∑

i

ξi(x
µ)ki(w) , (3.42)

where the sum over i can again be a combination of discrete and continuous

parts. To obtain a suitable basis ki(w), we look at the linearised equation

of motion for Ξ(xM ) with Φ(xM ) = φc(w):

(

∂µ∂µ − ∂2
w +

ab(b+ 1)

2m
φ2
c + n2

)

ξiki = 0 . (3.43)

We want ξi(x
µ) to satisfy the four-dimensional Klein-Gordon equation with

mass δi. This leads to

(

− d2

dz2
+ b(b+ 1) tanh2 z

)

ki =

(

2(δ2i − n2)

m2

)

ki , (3.44)

where z = mw/
√

2 as before. This Schrödinger-like equation has the same

form as the one obtained for the kink modes, equation (3.10). We see that

the kink sets up a symmetric modified Pöschl-Teller potential well which

traps not only its own modes, but also those of a coupled scalar field. Look-

ing to Appendix C we see that the basis ki contains ⌈b⌉ bound modes4

(which justifies our choice for the strange Yukawa coupling constant) and a

4We use the standard notation ⌈.⌉ for the ceiling function.
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Figure 3.2: Typical extra-dimensional profiles for the lowest, discrete, bound states

arising from a scalar field coupled to a kink. We have chosen b = 3 and n2 =
−3m2/2. The modes are k0(w) at the bottom, followed by k1(w) then k2(w),
plotted against the dimensionless extra-dimensional coordinate z = mw/

√
2.

continuum. The masses of the bound states are

δ20 = n2 +
1

2
bm2 , (3.45a)

δ21 = n2 +
1

2
(3b− 1)m2 , (3.45b)

δ22 = n2 +
1

2
(5b− 4)m2 , (3.45c)

...

δ2i = n2 +
1

2
((2i + 1)b− i2)m2 , (3.45d)

and for the continuum we have

δ2q = n2 +
1

2

(

q2 + b(b+ 1)
)

m2 , (3.46)

where q ∈ R labels the continuum modes. Unlike the modes of the kink, this

spectrum of masses does not in general include a zero mode and the bottom

of the spectrum is dependent on the parameters n, b and m. We also have

the freedom to change the sign of n2 in the original action and dial up any

positive, zero, or negative value for the mass δ20 of the ground state. We will

not give explicit forms of the functions ki; they are easily determined from

Appendix C. Instead, we provide a plot of the discrete profiles k0, k1 and k2

for the case where b = 3 and n2 is chosen such that δ20 = 0; see Figure 3.2.
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As before, we use the basis ki to expand Ξ in the original action (3.40)

and integrate over the extra dimension. Including the kink sector, the effec-

tive four-dimensional action is then

SΦ+Ξ =

∫

d4x [−εφc
+ Lφ + Lξ] , (3.47)

where the kink-only part Lφ is given by equation (3.15), and the Lagrangian

for the additional coupled scalar is

Lξ =

⌈b−1⌉
∑

i=0

[

1

2
∂µξi∂µξi −

1

2
δ2i ξ

2
i

]

+

∫ ∞

−∞
dq

[

1

2
∂µξq∂µξq −

1

2
δ2q ξ

2
q

]

− g
(3)
ijkφiξjξk − g

(4)
ijklφiφjξkξl − τijklξiξjξkξl . (3.48)

The Yukawa and self-coupling factors are

g
(3)
ijk =

ab(b+ 1)

2m

∫ ∞

−∞
φcηikjkk dw , (3.49a)

g
(4)
ijkl =

ab(b+ 1)

4m

∫ ∞

−∞
ηiηjkkkl dw , (3.49b)

τijkl =
c

4n

∫ ∞

−∞
kikjkkkl dw . (3.49c)

With this expanded four-dimensional action, we are ready to analyse the

various limits of the model with the scalar field.

3.2.2 The thin kink with a scalar field

In this subsection we consider the combined five-dimensional action SΦ+Ξ =

SΦ + SΞ and the various limits that arise through m, the mass of the kink.

As discussed previously, we have three scenarios which are characterised by

the sign of µ. In the case µ < 0 there is no kink and we are left with two

interacting five-dimensional fields Φ and Ξ. The thick kink scenario, µ = 0,

has many interacting four-dimensional scalar fields, the details given by the

mass spectra of φi and ξi and the couplings κ, g and τ . We will not dwell

on these two cases, but instead concentrate our attention on the thin kink

limit and explore the parameter space of b, c and n.

It was shown in Section 3.1.2 that the thin kink limit leaves only the

energy density of the domain wall in the effective four-dimensional action
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(assuming the zero mode of translation is truly frozen out). The dynamics

of all the scalar modes φi are removed and so the g(3) and g(4) Yukawa terms

in (3.48) are eliminated.5 With m→ ∞ and b finite, the masses of all the ξi

modes will also tend to infinity and the scalar Ξ becomes completely frozen

out. To leave some remnant of Ξ in the model we have two choices: either

take b to zero to counter m2, or choose n2 such that it cancels 1
2bm

2.

For the first choice, let n be finite and b = b̃Λβ . Then δ20 ∼ Λβ+2µ and

the mode ξ0 has finite mass if β + 2µ ≤ 0. Since b→ 0 in the limit Λ → ∞,

there are in fact no bound modes, the basis ki is not valid and we must

consider Ξ as a five-dimensional field. The effective action for such a limit

of the parameters is6

S5D
Φ+Ξ =

∫

d4x [−εφc
] +

∫

d5x

[

1

2
∂MΞ∂MΞ − 1

4
bm2Ξ2 −W (Ξ)

]

. (3.50)

We see that the five-dimensional field Ξ has nothing dynamical to couple to,

and just picks up an addition to its Ξ2 term. If we have the strict inequality

β + 2µ < 0, this addition to the mass will be zero.

The second choice which keeps some part of Ξ alive is to change the sign

of n2 and fine tune it to exactly cancel the infinite term in δ20 . An exact

cancellation would render the mode ξ0 massless; we can be more general and

allow a finite mass to remain by choosing

n2 = −1

2
bm2 + n2

0 , (3.51)

where n0 is finite. Let us briefly comment on the situation where b→ 0, but

not quickly enough to counter m (thus −2µ < β < 0) and so we must choose

n2 as in equation (3.51). In this case there are again no bound modes and

Ξ is a five-dimensional field with equivalent physics as described by (3.50),

except the quadratic term of the generated potential is replaced by 1
2n

2
0Ξ

2.

We can now restrict our analysis to the case where β ≥ 0 and n2 is of the

form given by (3.51). As we have a non-zero b, there is at least one bound

mode, and, in fact, only the lowest bound mode will have finite mass. The

5Section 3.1.3 established that the translation symmetry manifests as a linear combina-
tion of φ0,1,q which can assume a non-zero constant value with zero energy cost, even in the
thin kink limit. One can show that this contribution to the Yukawa terms is counteracted
by shifting the ki basis to align with the shifted kink, and then redefining ξi.

6This result uses tanh2(mw/
√

2) → 1 as m → ∞, which ignores the fact that the
distribution vanishes on a set of measure zero at the origin.
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dynamics of the higher bound modes and the continuum will not be part of

the model as their corresponding masses are infinite. With only ξ0 alive, the

quartic coupling terms reduce to just the one with the factor τ0000. Putting

all these pieces together we arrive at the four-dimensional action

S4D
Φ+Ξ =

∫

d4x

[

−εφc
+

1

2
∂µξ0∂µξ0 −W0(ξ0)

]

, (3.52)

with

W0(ξ0) =
1

2
n2

0ξ
2
0 +

c

4
√

2π

√
2Γ2(b+ 1

2)Γ(2b)√
bΓ2(b)Γ(2b + 1

2)
ξ40 . (3.53)

For large values of b, this potential simplifies to

W0(ξ0)
b→∞−−−→ 1

2
n2

0ξ
2
0 +

c

4
√

2π
ξ40 . (3.54)

This analysis shows that in the thin kink limit, a five-dimensional cou-

pled scalar field is projected down to a single, localised, four-dimensional

scalar field ξ0. As the parameters n0 and c are arbitrary, one can generate

a phenomenologically suitable potential for ξ0, in particular the sign of n2
0

can be changed to yield a potential which encourages a non-zero vacuum

expectation value. We mention two uses of this. Most obviously this mech-

anism can be used to localise the standard model electroweak Higgs field to

a brane, and it should be no trouble to arrange Yukawa couplings to fermion

fields for mass generation. We utilise such a method in Chapter 5 when we

construct our domain-wall localised standard model.

Our second application of a localised scalar is the following. Notice that

the effective potential W0(ξ0) has the same form as the kink potential V (Φ)

and can thus support a domain-wall solution. This leads to the idea of nested

domain walls, which have been explored previously by Morris [208] in the

context of cosmological defects. For the case of a nested brane world, gener-

ated by domain walls, consider a six-dimensional model with the two scalar

fields Φ and Ξ and a suitable potential. One can use Φ to generate a domain

wall and an effective five-dimensional action, and then use the lowest pro-

jected mode of Ξ in the same way to generate an effective four-dimensional

action. The method used does not depend on the dimensionality and one is

free to generate an arbitrary number of nestings. When actually calculating

the background configuration generated by multiple scalar fields, one must
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solve all the Euler-Lagrange equations of motion self-consistently, or ensure

that the energy scales associated with each kink form a large hierarchy, to

prevent the formation of the interior kink from de-stabilising its parent. Of

course, this mechanism just deals with the formation of the domain wall.

The non-trivial exercise is to check that gravity can be broken down in sim-

ilar stages, and made to reproduce four-dimensional general relativity; this

will not be attempted here, but see [147, 148, 149] for derivations of the

Randall-Sundrum warped metric in the presence of nested and intersecting

fundamental branes.

3.3 Adding a fermion field

In the previous section we performed a full analysis of the modes of a five-

dimensional scalar field coupled to a kink. We showed that in the thin

kink limit, an effective four-dimensional scalar field remains and could be

potentially useful for model building. In direct analogy with this analysis

we now consider a five-dimensional massless fermion with Yukawa coupling

to Φ, find a suitable basis for decomposition, and investigate the limiting

behaviour. This is a generalisation of the result first obtained by Rubakov

and Shaposhnikov [45], which we discussed at length in Section 1.3.1. In fact,

the four-dimensional, massless, chiral fermion that emerges in the Rubakov

and Shaposhnikov set-up is exactly the lowest mode of the Kaluza-Klein

tower that arises in the more general situation that we consider here. For

a partially analytic analysis of massive fermion modes confined to a thick

brane in the presence of gravity, see [187].

3.3.1 Fermion modes

Fermions in five-dimensions are four-component spinors and their Dirac

structure is described by ΓM (M = 0, 1, 2, 3, 5) with {ΓM ,ΓN} = 2ηMN .

Specifically, we take Γµ = γµ and Γ5 = −iγ5 where γµ,5 are the usual

gamma matrices in the Dirac representation. Our action for a massless,

five-dimensional fermion Ψ(xM ) coupled to the kink is SΦ+Ψ = SΦ + SΨ

where the fermion action is

SΨ =

∫

d5x

[

ΨiΓM∂MΨ −
√

ad2

2m
ΦΨΨ

]

. (3.55)
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The kink parameters a and m are the same as before and d is a dimensionless

coupling parameter. The Yukawa coupling constant is chosen to take an

unusual form so that d represents the number of bound fermion modes, in

analogy with b in the coupled scalar field case; this will be demonstrated

shortly. The discrete Z2 symmetry takes Φ → −Φ, so, under this symmetry,

the fermion field must transform in such a way as to obtain ΨΨ → −ΨΨ but

at the same time keep the kinetic term invariant. This can be accomplished

by extending the action of the kink Z2 symmetry to include w → −w and

Ψ → iΓ5Ψ. (Note that w → −w does not destroy the invariance of the

scalar field kinetic terms.) This symmetry then forbids a mass term for the

five-dimensional Ψ.

As with the scalar field Ξ, we expect the extra-dimensional behaviour of

Ψ to be quite different to the four-dimensional part. Also, because of the

Dirac structure of the fifth gamma matrix, Γ5 = −iγ5, we expect left- and

right-handed projections of the four-dimensional part to behave differently.

Thus we choose the general Fourier expansion

Ψ(xµ, w) =
∑

i

ψLi(x
µ)fLi(w) +

∑

i

ψRi(x
µ)fRi(w) , (3.56)

where the fLi(w) and fRi(w) are a fixed basis, the ψi(x
µ) are dynamical four-

dimensional fields, γ5ψLi = −ψLi, γ5ψRi = ψRi and the sum over i includes

both discrete and continuous modes. To obtain the defining equations for the

basis functions fi, we impose that the ψi satisfy the massive Dirac equation

by i/∂ψLi = σiψRi and i/∂ψRi = σiψLi, where σi is the mass of the four-

dimensional mode corresponding to the pair of spinors ψLi and ψRi. Then,

substituting the expansion (3.56) into the Dirac equation for Ψ (not given;

its form is obvious from the action (3.55)), we arrive at

ψLi

(

−∂wfLi + fRiσi −
√

ad2

2m
φcfLi

)

+ ψRi

(

∂wfRi + fLiσi −
√

ad2

2m
φcfRi

)

= 0 . (3.57)

Since left and right Dirac components are independent and the ψi are

arbitrary fields, both of the two parenthesised factors in equation (3.3.1)
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must be zero. Hence the fLi and fRi must satisfy a set of two first order

coupled ordinary differential equations. We turn these equations into two

uncoupled, second-order equations:

(

− d2

dz2
+ d(d+ 1) tanh2 z − d

)

fLi =
2σ2

i

m2
fLi , (3.58a)

(

− d2

dz2
+ d(d− 1) tanh2 z + d

)

fRi =
2σ2

i

m2
fRi . (3.58b)

Again, as with the scalar field, we see that the kink sets up a symmet-

ric modified Pöschl-Teller potential well which traps the extra-dimensional

component of the fermion field. This has been noted in a similar context of

fat branes in [209], and in the context of a two-dimensional Dirac equation

in [210]. We use Appendix C of this thesis to obtain the solutions. The

bound modes come in pairs; their masses and extra-dimensional profiles are

given by

(σd0)2 = 0

{

fdL0(w) = F dL0 cosh−d z

fdR0(w) = 0 ,
(3.59a)

(σd1)2 =
1

2
(2d− 1)m2

{

fdL1(w) = F dL1 sinh z cosh−d z

fdR1(w) = F dR1 cosh−d+1 z ,
(3.59b)

...

(σdn)
2 =

1

2
(2nd− n2)m2

{

fdLn(w) =
1

σdn

(

dm√
2

tanh z − d

dw

)

fd−1
L,n−1

fdRn(w) = fd−1
L,n−1(w) .

(3.59c)

These bound state modes are valid for all positive values of d and there are

⌈d⌉ sets of modes.

For the continuum, the solutions can be found in terms of standard

functions when d is a positive integer. We present here the solutions when

d = 1 and d = 2 (corresponding to one and two bound states, respectively,

lying below the given continuum), and a recurrence relation for larger integer
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Figure 3.3: Extra-dimensional profiles for the massless, left-handed four-
dimensional fermion, and two massive fermions, which arise when a five-dimensional
fermion is coupled to a kink. For these plots we have taken d = 3. In the left
panel are the left-handed modes fL0(w), fL1(w) and fL2(w), and in the right panel
are the right-handed modes fR1(w) and fR2(w), plotted against the dimensionless
extra-dimensional coordinate z = mw/

√
2.

values of d:

(σ1
q )

2 =
1

2
(q2 + 1)m2

{

f1
Lq(w) = F 1

Lqe
iqz (tanh z − iq)

f1
Rq(w) = F 1

Rqe
iqz ,

(3.60a)

(σ2
q )

2 =
1

2
(q2 + 4)m2

{

f2
Lq(w) = F 2

Lqe
iqz
(

3 tanh2 z−(q2+1)−3iq tanh z
)

f2
Rq(w) = F 2

Rqe
iqz (tanh z − iq) ,

(3.60b)

...

(σdq )
2 =

1

2
(q2 + d2)m2

{

fdLq(w) =
1

σdn

(

dm√
2

tanh z − d

dw

)

fd−1
Lq

fdRq(w) = fd−1
Lq (w) .

(3.60c)

As in previous equations, the real parameter q selects a particular continuum

mode. The normalisation coefficients F dL and F dR can be computed with the

help of Appendix C, specifically equation (C.7). Figure 3.3 is a plot of

the discrete left- and right-handed extra-dimensional profiles, given by the

equations (3.59), for the case where d = 3.
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Using these basis functions, we expand the original action (3.55) and

integrate over the extra dimension. The effective four-dimensional action,

including the kink dynamics, is

SΦ+Ψ =

∫

d4x [−εφc
+ Lφ + Lψ] , (3.61)

where the Lagrangian for the expanded Ψ is

Lψ = ψL0i/∂ψL0 +

⌈d−1⌉
∑

i=1

ψi(i/∂ − σi)ψi +

∫ ∞

−∞
dq
[

ψq(i/∂ − σq)ψq
]

− hjkl φj ψLk ψRl − h∗jlk φ
∗
j ψRk ψLl . (3.62)

We have condensed the notation using ψi = ψLi + ψRi and similarly for ψq.

For brevity in the Yukawa terms, the implicit sum over j = 0, 1 denotes a

sum over the bound scalar modes φj and an integral over the continuum

modes φq; similarly the sums over k and l denote sums over bound and

continuum fermion modes. The effective dimensionless Yukawa coupling is

hjkl =

√

ad2

2m

∫ ∞

−∞
ηjf

∗
LkfRl dw . (3.63)

We can compute these hjkl. Those of importance are the couplings between

the bound kink modes and the bound fermion modes, the first few being

h0i0 = 0 (for all i) , (3.64a)

h001 =

√

3a

8
√

2

(

d− 1
2

d− 1

) 3
2 Γ2(d− 1

2)

Γ2(d− 1)
, (3.64b)

h011 = h101 = 0, (3.64c)

h111 =

√

3a

8
√

2

(d− 1
2)

1
2

d− 1

Γ2(d− 1
2)

Γ2(d− 1)
. (3.64d)

This analysis includes the well known chiral zero mode localisation when

all fermion modes except ψL0 are removed from (3.62). In this reduced

model, there are no Yukawa couplings between ψL0 and any of the kink

modes φi due to the chirality of the fermion mode.



114 Chapter 3. Kink modes and confined matter fields

3.3.2 Kink limits with a coupled fermion field

With the effective, four-dimensional description of the bulk fermion Ψ, equa-

tions (3.61) and (3.62), we can now consider the limits of the kink and the

fate of the fermion modes. With no kink (µ < 0) the basis fi is not valid

and we instead obtain a model containing the coupled five-dimensional fields

Φ and Ψ. The thick kink scenario (µ = 0) contains the bound-state, four-

dimensional scalars φi and fermions ψi, the continuum modes φq and ψq,

and couplings between these fields. The third limit, the thin kink limit

(µ > 0), is what we are most interested in, where the remnant of the kink

sector is just the energy density (assuming the kink zero mode is frozen out).

Then the Yukawa term in (3.55), which couples Ψ to Φ, reduces to simply

a coupling of Ψ to the classical kink background:

√

ad2

2m
ΦΨΨ =

|dm|√
2

tanh2(z) ΨΨ , (3.65)

and we have only the parameter d left to play with. There are four scenarios,

corresponding to different limiting behaviours of d, and we classify these

using the previous technique for parameterising limits by writing d = d̃Λδ,

where d̃ is finite and Λ → ∞.

In the first scenario, with δ = −µ and so d → 0, there are no bound

fermion modes, and the fermion is left as a five-dimensional field with the

action

S5D
Φ+Ψ =

∫

d4x [−εφc
] +

∫

d5x

[

ΨiΓM∂MΨ − |dm|√
2
θ(w)ΨΨ

]

, (3.66)

where θ(w) is the step function. The fermion in this case has an unusual

mass term that changes sign across the kink. For the second scenario, with

δ < −µ, we have the same situation as in the first scenario, except the mass

term disappears. Third, if −µ < δ < 0, d is not going to zero fast enough

to counter m, and the unusual mass term becomes infinite. In this case, the

five-dimensional field Ψ is thus frozen out and we are left with just the kink

energy density in our effective theory.

The fourth scenario is the most interesting to us. It has δ ≥ 0, and so

d > 0 and there is at least one bound fermion mode. Because the masses

of these modes go like m, all modes are frozen out except for the zero mode

ψL0. None of the Yukawa couplings h are relevant because they couple ψL0
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to higher fermion modes which are not dynamical. The effective action is

then simply

S4D
Φ+Ψ =

∫

d4x
[

−εφc
+ ψL0i/∂ψL0

]

, (3.67)

which contains the dynamics of a single, four-dimensional, chiral, massless

fermion, along with the energy density of the kink εφc
. Thus we obtain the

result of Rubakov and Shaposhnikov [45] in the thin kink limit with d > 0.

This is of obvious importance in model building, where chiral zero modes

are the basic ingredients for constructing theories with fermions, which may

ultimately obtain a mass from, for example, the Higgs mechanism.

3.3.3 Four- and five-dimensional interacting fields

In all the limits of the models we have considered thus far, the dynamical

fields are either exclusively four-dimensional or exclusively five-dimensional.

It is possible to construct an action which, in the thin kink limit, contains

interacting four- and five-dimensional fields, and we shall provide an explicit

example of such a model here. Because the dynamics of the kink are frozen

out in the thin kink limit, we require two extra fields from the outset: one

which couples appropriately to the kink and provides a four-dimensional zero

mode, and another which remains five-dimensional. To implement this idea,

we take the original action for the kink, equation (3.1), and the fermion,

equation (3.55), and add the scalar field Ξ with a coupling to the fermion

only. The action is then

Sall = SΦ + SΨ +

∫

d5x

[

1

2
∂MΞ∂MΞ − sΞ(ΨΨc + ΨcΨ)

]

, (3.68)

where s is a dimensionful coupling constant and the charge conjugate field

is defined as Ψc = Γ2Γ5Ψ∗. In the coupling term, the ΨΨc form is chosen, as

opposed to ΨΨ, because we want the massless, four-dimensional, left-handed

fermion (the lowest of the fermion modes) to couple to Ξ. To respect the

discrete Z2 symmetry, we must have Ξ → Ξ.

We choose the kink-fermion coupling d 6= 0 such that there is at least

one fermion bound mode (the massless chiral mode) and follow the thin kink

analysis performed previously. All the massive fermion modes are frozen out
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and the Ξ coupling term becomes

sΞ(ΨΨc + ΨcΨ)
m→∞−−−−→ s (fL0)

2 Ξ(ψL0ψ
c
L0 + ψcL0ψL0) . (3.69)

The extra-dimensional factor from the fermion zero mode becomes a delta

distribution in the thin kink limit

(fL0(w))2 =
mΓ(d+ 1

2)√
2π Γ(d)

cosh−2d

(

mw√
2

)

m→∞−−−−→ δ(w) . (3.70)

The w integral can then be performed over the Yukawa term given by (3.69),

which reduces the action (3.68) to

S4D/5D
all =

∫

d4x
[

−εφc
+ ψL0i/∂ψL0 − sΞ|w=0(ψL0ψ

c
L0 + ψcL0ψL0)

]

+

∫

d5x

[

1

2
∂MΞ∂MΞ

]

.

(3.71)

This is a dynamically generated model describing a four-dimensional

zero mode ψL0 coupled at the extra-dimensional point w = 0 to a five-

dimensional field Ξ. The situation can easily be reversed to have Ψ five-

dimensional and coupling at w = 0 to the four-dimensional ground state

mode of Ξ. Extensions to multiple four and five-dimensional fields are also

easily obtained.

3.4 Conclusion

The main aim of this thesis is to construct a domain-wall brane version

of the standard model, which, first and foremost, requires a comprehensive

understanding of the dynamics of the underlying domain wall. The kink

solution, equation (3.4), is an attractive candidate for the domain wall, as it

can localise not only massless, chiral fermions but also scalars with arbitrary

quartic potentials, as demonstrated in this chapter. We have also provided

a detailed analysis of the modes of the kink and localised matter fields, and

provided analytic solutions for the extra-dimensional profiles of these modes.

In particular, in Section 3.1 we discussed the classical kink solution,

determined its modes, and investigated the behaviour of these mode degrees-

of-freedom in the limits of no kink, a thick kink and a thin kink. Due to the

quartic potential which sets up the kink profile, the Kaluza-Klein spectrum
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consists of a massless bound mode, a massive bound mode and a massive

continuum. In the thin kink limit all the massive modes freeze out as their

mass becomes infinite. The dynamics of the zero mode of translation also

freeze out in this limit, due to a divergent quartic self coupling, and we are

lead to the physical interpretation that an infinitely thin kink is infinitely

rigid. We discussed in detail why we believe our approach is more general

than the collective coordinate approach. The conclusion that we reach is

that, in the thin kink limit, only the finite energy density of the kink remains

in the effective four-dimensional action.

A full analysis of a second scalar field coupled to the kink was performed

in Section 3.2. We showed that such a scalar field is trapped by the kink

in a symmetric modified Pöschl-Teller potential well, and we gave the mass

spectrum that results from such a trapping. In the thin kink limit, this extra

scalar field could either freeze out completely, be a free five-dimensional field,

or have just its ground state mode in an effective four-dimensional action.

We showed that in this latter case, an arbitrary quartic potential could be

generated for this mode and it could thus be used as a standard model

electroweak Higgs field. We incorporate such a mechanism in the model

constructed in Chapter 5.

Our final analysis, performed in Section 3.3, was that of a fermion cou-

pled to the kink, and its resulting mode decomposition. This generalised the

result, due to Rubakov and Shaposhnikov [45], that a left-handed, massless,

four-dimensional fermion can be localised to the kink solution. The full

spectrum of four-dimensional fields consist of a left-handed zero mode, a

certain number of pairs of left- and right-handed modes and a continuum of

pairs. In the thin kink limit, we showed that the fermion can either freeze

out completely, be five-dimensional with or without a mass term, or repro-

duce the result of a localised four-dimensional, massless, left-handed mode.

We also provided an explicit example of a model where the kink localised a

left-handed, zero mode fermion, and this fermion was coupled, at a single

point in the extra-dimension, to a full five-dimensional scalar field.

The analyses presented in this chapter demonstrate explicitly how a

five-dimensional field can be dimensionally reduced to a tower of effective

four-dimensional modes. Furthermore, the mechanisms discussed here form

the basic tools necessary to write down the standard model, without gauge

fields, on a dynamically generated brane in five-dimensions. The details of
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the spectrum of the decomposed five-dimensional fields will be necessary to

compute phenomenology associated with interactions between the massless

and massive modes, and knowledge of the mass spectra can also be used, in

conjunction with experimental data, to put an upper bound on the width

of the brane. There remains the outstanding problem of the zero mode of

translation of the kink, whose dynamics may be frozen out in the thin kink

limit.



Chapter 4

Warped gravity

and matter spectra

Prior to the discovery by Randall and Sundrum of the warped metric

solution, little thought had been put into the possibility of there exist-

ing an infinite extra-dimension. Since gravity is described by the curvature

of spacetime, an infinite extra-dimension would necessarily allow gravity to

propagate in more than the usual four-dimensions, leading to, for exam-

ple, an unacceptable law of gravitational attraction. As we have seen in

Chapter 3, it is possible to transform the extra degree of freedom associated

with an infinite extra-dimension into a Kaluza-Klein tower of modes, and ar-

range for only the lowest-energy mode to be excited. Randall and Sundrum

showed [95] that such a technique can be applied to gravity: at low-energies,

it is possible to reproduce four-dimensional gravity on a brane living in a

non-compact five-dimensional Anti-de Sitter bulk. We detailed such a set-up

in Section 1.5.1. In particular, the key ingredients of the Randall-Sundrum

(RS) model are a negative bulk cosmological constant and a positive brane

tension, and these two quantities must be tuned against each other. The

time-independent solution to Einstein’s equations is then a warped metric

respecting four-dimensional Poincaré invariance, and such a metric essen-

tially traps gravity to the brane, due to the existence of a localised zero

mode graviton in the Kaluza-Klein tower.

As discussed in Section 1.5.2, the trapping of gravity to a brane can

be extended to the situation where the brane manifests as a domain wall,

or a kink, and the RS warped metric becomes smoothed out, or regu-

119
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larised [165, 173, 174, 211, 188, 202, 182]. A kink also provides a natu-

ral mechanism for confining both fermion and scalar fields to a thick four-

dimensional slice of a five-dimensional bulk, a mechanism which we explored

in detail in Chapter 3. These two ideas for trapping gravity and matter fields

find a natural union: they both use a kink background to dynamically gen-

erate the brane, and they both transform the extra-dimensional degree of

freedom to a tower of modes. Furthermore, if our ultimate aim is to con-

struct a realistic, infinite extra-dimensional version of our current model of

the universe, we shall certainly need to describe both gravity and matter to-

gether, and also eventually incorporate gauge fields.1 It is thus important to

ensure that gravity, which becomes an integral part of the domain-wall back-

ground configuration, does not destroy the desirable features of the matter

localisation. This chapter is therefore dedicated to an analysis of the gen-

eral features of localised fermions and scalars in smoothed, field-theoretical

versions of the RS scenario. We demonstrate that, despite some interest-

ing modifications to the associated Kaluza-Klein spectra, the mechanisms

of Chapter 3 can still be used to trap matter fields.

Recall that the Kaluza-Klein spectra of matter fields, of fermions and

scalars, in general begins with a discrete set of modes (see equations (3.11),

(3.45) and (3.59)), followed by a continuum which begins at the non-zero

height of the trapping potential (see equations (3.12), (3.46) and (3.60)).

For the case of scalar field localisation, it was first noted by Bajc and

Gabadadze [212] that with gravity included, the scalar continuum modes

can begin at zero energy. Dubovsky, Rubakov and Tinyakov [186] found

that this could be the case for fermions also, and that introducing a five-

dimensional mass term can produce massive, localised, meta-stable states.

Due to their coupling to the low lying continuum modes, these meta-stable

states can tunnel into the bulk and have a finite lifetime. Ringeval, Peter

and Uzan [187] considered a specific model and determined the full mass

spectrum of the meta-stable, or quasi-localised, modes and demonstrated

that their lifetime could be made longer than the age of the universe.

In this chapter we present a general analytic argument which demon-

1We emphasise that, in this thesis, we are mostly concerned with classical field theory,
so combining gravity and particle physics is as straightforward as combining their indi-
vidual actions. On the occasions where we appeal to quantum field theory, we consider it
in a curved spacetime. We do not enter the regime of quantum gravity.
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strates these facts explicitly: in the presence of RS2-like gravity, both scalar

and fermion fields exhibit a continuum of properly normalisable modes start-

ing at zero mass. Briefly, we show that the potential well set up by the kink,

the well that traps the matter fields, is warped down to zero height at large

distances from the centre of the domain wall. The warping is due to gravity,

and the resulting potential well is qualitatively similar to the volcano po-

tential which traps the graviton in the RS model. If the matter fields have

discrete modes present in their spectra in the gravity-free case, these become

resonances in the gravity-induced continuum, and represent quasi-localised

states. Off-resonant matter modes are highly suppressed on the brane, in

direct analogy with the continuum gravity modes. We argue that, in the

presence of interactions, the low-energy, non-resonant continuum modes will

couple only very weakly to the resonant modes localised on the brane, and

we present numerical calculations for a toy model which supports this argu-

ment. Thus, despite the introduction of continuum modes, four-dimensional

physics can still be reproduced at low energies, and we can confidently use

such a trapping mechanism in model building, as we shall proceed to do in

Chapters 5 and 6.

This chapter is structured as follows. In Section 4.1 we discuss the RS

warped metric solution, with emphasis on the structure of the volcano po-

tential in both the original set-up and in a scenario where the domain wall is

generated by a kink. Section 4.2 gives an analysis of localised fermions in the

presence of a warped metric, demonstrating that the fermion mass spectrum

has a continuum beginning at zero, and that the modes can still be prop-

erly normalised in the presence of gravity. We repeat such a gravitational

analysis for a trapped scalar field in Section 4.3, and a similar conclusion is

reached: the scalar continuum modes begin at zero mass. As we outlined in

Section 3.2.2, it is possible to obtain discrete scalar modes with tachyonic

mass in order to realise, for example, the Higgs mechanism; we show that

this can still be done when gravity is included in the model. In Section 4.4

we consider a specific toy model to demonstrate more clearly the effect of

gravity, and provide numerical support to the claim that the gravity induced

continuum modes are only weakly coupled to a brane-localised zero mode.

Section 4.5 concludes the chapter.
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4.1 Randall-Sundrum and the volcano potential

The spectrum corresponding to the effective four-dimensional graviton in

the RS model was shown to consist of a single massless mode, followed by a

continuum of massive modes starting arbitrarily close to the zero mode [95].

The zero mode graviton is responsible for reproducing the Newtonian force

law, and the integrated effect of the continuum modes at the position of

the brane is negligible at low energies, due to the suppression of their wave-

functions near the brane; see equation (1.50). Csáki et al. have shown [174]

that the same result holds for the situation of regularised RS-like spacetimes,

where the brane is dynamically generated by a field.

In both the original set-up and the regularised version, the spectrum

of gravity modes is obtained by looking at a Schrödinger-like differential

equation for the extra-dimensional profiles of the modes. We performed

this type of calculation in Chapter 3, where the potential in the differential

equation took the form of a symmetric modified Pöschl-Teller potential,

which looks qualitatively like a smooth version of the canonical square well

studied in basic quantum mechanics. For the graviton, the corresponding

potential is modified further, and takes the shape of a volcano: it has a

deep well centred on the brane, tall barriers either side of the centre, and

tapers off to zero height at large distances into the bulk (along the extra-

dimension). We now proceed to give explicit expressions for the volcano

potential, as a warm-up to the more complicated, but qualitatively similar,

behaviour of trapped matter fields in the presence of gravity.

In this chapter we consider a five-dimensional spacetime, xM = (xµ, w),

and utilise the RS metric ansatz:

ds2 = e−2σ(w)ηµνdx
µdxν − dw2 . (4.1)

To analyse the behaviour of gravity modes for this ansatz, one adds pertur-

bations Hµν(x
µ, w) to the metric,

ds2 = e−2σ(w) [ηµν +Hµν(x
µ, w)] dxµdxν − dw2 , (4.2)

and Einstein’s equations are then used to obtain the equation of motion

for Hµν , with a background specified by the (arbitrary for now) function

σ(w); see equation (1.46) for the resulting Einstein’s equation, and also the
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surrounding discussion. The extra-dimensional dependence of Hµν is sepa-

rated from the four-dimensional behaviour by the expansion Hµν(x
µ, w) =

∑

n h
n
µν(x

µ)En(w), where the mode hnµν is assumed to satisfy ∂λ∂λh
n
µν =

−m2
nh

n
µν with mn the mass of the mode. A Schrödinger-like equation is ob-

tained by going to conformal coordinates z, where dw = e−σdz, and rescaling

the mode profile by En(w) = e3σ/2Ẽn(z). As a result, the extra-dimensional

behaviour of gravity perturbations is described by the equation

−d
2Ẽn(z)

dz2
+ Ugrav(z)Ẽn(z) = m2

nẼn(z) , (4.3)

where the effective trapping potential is given by

Ugrav(z) =
9

4

(

dσ

dz

)2

− 3

2

d2σ

dz2
. (4.4)

In the case of the fundamental brane, the solution for the warp factor

exponent is σRS(w) = k|w|, (see equation (1.34)) where k > 0 is a parameter

of the model, and the bulk five-dimensional cosmological constant is fine

tuned to ΛRS = −6k2. The corresponding potential for the graviton is then

found to be

Ugrav(z) =
15

4

k2

(1 + k|z|)2
− 3k2δ(kz) . (4.5)

This is the volcano potential. Because we have an infinitely thin brane, the

well of the volcano, the −3k2δ(kz) term, is also infinitely thin. Nevertheless,

this well supports a bound state, corresponding to the zero mode graviton,

and its profile is

Ẽ0(z) =
√
k (1 + k|z|)−

3
2 . (4.6)

The normalisation of this profile is determined by
∫∞
−∞ Ẽ2

0(z) dz = 1. Plots

of Ugrav and Ẽ0 are given in Figure 4.1. It can be seen that the sides of the

volcano decay to zero height for large k|z|, and hence this potential allows

solutions with an arbitrarily small eigenvalue mn. These solutions are the

continuum gravity modes, and they are suppressed in the region kz ∼ 0 due

to the relatively large barrier set up by the sides of the volcano. This is in

contrast to the zero mode Ẽ0, which attains its largest value at kz = 0, and

decays to zero away from the brane.

Moving on from the fundamental brane scenario, we want to consider a

set-up where the brane is generated by the classical background configura-
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Figure 4.1: Plot of the volcano-shaped graviton trapping potential Ugrav(z) and the

zero mode profile Ẽ0(z) for the Randall-Sundrum warped metric with an infinitely
thin brane. Ugrav(z) is plotted in units of k2, and Ẽ0(z) in units of

√
k. The narrow

well in the centre of the plot schematically represents a negative delta distribution.

tion of a scalar field, or, in general, a set of scalar fields Φj(x
M ). To this end,

we take the Einstein-Hilbert action, using the time-like sign conventions of

Section A.3, and minimally couple the Φj to gravity as usual, to obtain the

background action

Sbg =

∫

d5x
√
G
[

M3
∗ (−R− 2Λ) +

1

2
GMN∂MΦj∂NΦj − V (Φ)

]

, (4.7)

where GMN is the five-dimensional metric, G its determinant, M∗ is the

five-dimensional Planck mass, R the five-dimensional Ricci scalar, and Λ the

bulk cosmological constant. There is an implicit sum over j, and the scalar

potential V (Φ) can take any form, so long as it respects the Z2 symmetry

Φj → −Φj ∀ j. Such a symmetry ensures that the global minimum of

V (Φ) is at least doubly degenerate, and attained for (say) Φj = ±Φmin
j . We

also require this Z2 to be independent of any continuous symmetries of the

theory.

To determine the background configuration, we must solve the coupled

Einstein and Klein-Gordon equations associated with (4.7); the solutions will

of course depend on the specific choice of the potential V (Φ). The ansatz

for the metric is as per the fundamental brane set-up, equation (4.1). We

also suppose there exists a solution φj(w) depending only on the coordinate
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w, satisfying the boundary conditions φj → ±Φmin
j as w → ±∞. Such a

solution for the scalar fields is topologically stable. Various authors [165,

173, 211, 188, 213, 202, 182] have found configurations compatible with the

assumptions made here, and, in general, the warp factor exponent σ takes

the form of a smooth even function of w with asymptotic behaviour σ → µ|w|
as |w| → ∞, where µ is some mass scale. This is a generalisation of the RS2

model, where σ = k|w| everywhere.

Allowing ourselves to make some more quantitative remarks, we shall

make use of a particular background solution found by Kobayashi, Koyama

and Soda [213], where a single, real scalar field φ(w) forms the domain wall.

The stability of the solution is demonstrated in Reference [213]. The warp

factor and scalar field take the form,2

σ(w) = a log[cosh(lw)] , (4.8a)

φ(w) = D arctan[sinh(lw)] , (4.8b)

where a and l are free parameters of the model (along with M∗) and D2 =

6aM3
∗ . Physically, l controls the width of the domain wall, and a can be

used to adjust the strength of gravity at the effective four-dimensional level

via the relationship

M2
Pl =

M3
∗

l

√
π Γ(a)

Γ(a+ 1
2)
. (4.9)

The limiting behaviour of this equation is M2
Pl → M3

∗ /la for a → 0 and

M2
Pl → M3

∗

√
π/l

√
a for a → ∞; see equation (A.9). Thus, smaller a corre-

sponds to weaker four-dimensional gravity (larger MPl).

The solutions (4.8) correspond to a five-dimensional cosmological con-

stant Λ = −6a2l2, and a scalar field potential

V (Φ) = 3al2M3
∗ (1 + 4a) cos2

(

φ

D

)

. (4.10)

The RS thin-brane limit corresponds to taking a → 0 and l → ∞ while

keeping the product al finite. One can then make the identification k = al,

where k is the single parameter of the RS2 model.

For this smooth, analytic case, the volcano potential is, as one would ex-

2The functional form of this solution appears different to that given in Reference [213],
but it is in fact equivalent.
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Figure 4.2: Plot of the volcano-shaped graviton trapping potential Ugrav(z) and

the zero mode profile Ẽ0(z) for domain-wall brane model with a smooth warped
metric. We have taken a = 1 in the model described by equation (4.8) to get
analytic solutions for the plot. Ugrav(z) is plotted in units of l2, and Ẽ0(z) in units

of
√
l.

pect, a smooth version of equation (4.5). In order that we can actually solve

the conformal coordinate transformation, we choose a = 1. This restriction

in relaxed in Section 4.4 where we use numerical techniques to solve the

equations. For now, with a = 1, we just want to get a feel for the smooth

form of the solutions. In terms of the conformal coordinate, the volcano

potential is

Ugrav(z) =
l2

(1 + (lz)2)2

(

15

4
(lz)2 − 3

2

)

, (4.11)

and it supports the zero mode profile

Ẽ0(z) =

√

l

2

(

1 + (lz)2
)−

3
4 , (4.12)

which is normalised, as before, by demanding
∫∞
−∞ Ẽ2

0(z) dz = 1. The poten-

tial and zero mode are plotted in Figure 4.2. Again, notice how the height

of Ugrav tapers to zero as z → ±∞, implying the existence of a continuum

of modes arbitrarily close to the zero mode.

We found in Chapter 3 that fermions and scalars are trapped to a kink-

generated domain wall by a potential well, which looks qualitatively like

that shown in Figure 3.1. In the following two sections, we demonstrate
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that this well is modified by the presence of a warped gravitational metric,

and takes the form of a smooth volcano potential, very similar in nature

to Ugrav plotted in Figure 4.2. Thus, the Kaluza-Klein spectra associated

with four-dimension matter fields is also modified to include a continuum

beginning at zero mass. Despite the presence of continuum modes, we show,

in Section 4.4, that effective four-dimensional behaviour is retained at low

enough energies.

4.2 Fermions in the presence of gravity

We begin this section with a brief review of the situation without gravity,

following closely the discussion in Section 3.3.1; this gives us a chance to

introduce our notation. Gravity is then added to the model and we demon-

strate how a continuum of modes are induced, and how the original discrete

modes in the Kaluza-Klein tower become resonances. It is also shown that

the fermion modes can be properly normalised in the presence of gravity.

Consider the five-dimensional background action (4.7) without gravity.

In particular, this action generalises the model of Section 3.3.1 by includ-

ing any number of scalar fields Φj. Now introduce a fermion field Ψ, and

Yukawa-couple it to the domain wall. Its action will be

SΨ =

∫

d5x
[

iΨΓA∂AΨ − gjΦjΨΨ
]

, (4.13)

where the gj are Yukawa coupling constants and ΓA = (Γµ,Γ5) = (γµ,−iγ5),

with γµ,5 the usual four-dimensional Dirac matrices and chirality operator,

respectively. The action of the Z2 symmetry (which acts on the Φj as

Φj → −Φj) is extended to include w → −w and Ψ → iΓ5Ψ. For simplicity

we have also imposed a global U(1) symmetry Ψ → eiθΨ, to forbid a term

g′jΦΨΨc + h.c. We now look to solve the Dirac equation in the classical

background of the domain wall. As per equation (3.56), we separate variables

by expanding Ψ in a generalised Fourier series:

Ψ(xµ, w) =
∑

n

ψnL(xµ)fnL(w) +
∑

n

ψnR(xµ)fnR(w) , (4.14)

where the fields ψnL,R are left- and right-handed four-dimensional spinors:

γ5ψL,R = ∓ψL,R, iγµ∂µψ
n
L = mnψ

n
R and iγµ∂µψ

n
R = mnψ

n
L, where mn is
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the mass of the nth mode. The sum over n generally includes an integral

over continuum parts. The basis functions fnL,R are found by solving the

five-dimensional Dirac equation with the above assumptions for ψL,R, which

yields

−fnL,R′′ +WL,Rf
n
L,R = m2

nf
n
L,R , (4.15)

where primes denote differentiation with respect to w, and

WL,R(w) = (gjφj)
2 ∓ gjφ

′
j . (4.16)

Here, and in subsequent equations, it is understood that fnL is solved for

using the potential WL(w) with the minus sign, while fnR has the plus sign.

Equation (4.15) is just a Schrödinger-like equation with eigenvalue m2
n.

The potential WL,R is a finite well, and WL,R → (gjΦ
min
j )2 > 0 as w → ±∞.

This asymptotic value corresponds to the eigenvalue of the beginning of

the continuum modes. The four-dimensional fermion spectrum therefore

contains a massless left-handed particle, a finite number of massive Dirac

particles with discrete masses, and a continuum of massive Dirac particles

beginning at mcont = gjΦ
min
j . Explicit solutions for a specific model are

presented in Section 3.3.

To include gravity in this model, we need to add the Einstein-Hilbert

term to the action, and minimally couple the fields Φ and Ψ to gravity as

usual. Formulating fermions in curved spacetime requires the introduction

of the vielbein e N
A (here A is an “internal” Lorentz index) and the spin

connection ωN , in order that ΨΓA∂AΨ be upgraded to a general coordinate,

and locally Lorentz, invariant object; see Section A.4 for material pertain-

ing to the vielbein formalism. A suitable choice for the vielbeins, which

reproduces the metric described by equation (4.1), and the associated spin

connection, are

e µ
A = δµAe

σ , e 5
A = δ5A , (4.17a)

ωµ =
i

2
σ′e−σγµγ

5 , ω5 = 0 . (4.17b)

The total action is then the sum of the background action (4.7) and the

fermion action

SΨ =

∫

d5x
√
G
[

iΨΓAe N
A (∂N + ωN )Ψ − gjΦjΨΨ

]

. (4.18)
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The resulting Dirac equation is

[

γ5∂w + ieσγµ∂µ − 2σ′γ5 − gjφj(w)
]

Ψ(xµ, w) = 0 . (4.19)

We again decompose Ψ into four-dimensional chiral components, and

obtain equations for the extra-dimensional profiles fL,R. As long as the

value gjΦ
min
j is large enough, there still exists a left-handed, massless mode;

see, for example, [212, 182]. For mn > 0 we get the following two (one each

for fnL and fnR) equations:

−fnL,R′′ + 5σ′fnL,R
′ +
[

2σ′′ − 6σ′2 + W̃L,R

]

fnL,R = m2
ne

2σfnL,R , (4.20)

where

W̃L,R = (gjφj)
2 ∓ gjφ

′
j ± gjφjσ

′ . (4.21)

The inclusion of gravity has meant that equation (4.20) is no longer sim-

ply a Schrödinger equation, so we cannot directly apply our knowledge of

one-dimensional quantum mechanics. It is however possible to transform

equation (4.20) into a Schrödinger-like equation, as we did in Section 4.1

when obtaining the volcano potential. Specifically, we let fnL,R = e2σ f̃nL,R,

and change coordinates to z(w) such that dz = eσdw. This change of coor-

dinates takes us to conformal coordinates, where the metric is conformally

flat: ds2 = e−2σ(w(z))(ηµνdx
µdxν − dz2). Equation (4.20) then becomes

−
d2f̃nL,R
dz2

+
(

e−2σW̃L,R

)

f̃nL,R = m2
nf̃

n
L,R , (4.22)

and we thus identify the effective potential

W̃ eff
L,R = e−2σW̃L,R . (4.23)

As |w| → ∞, σ ∼ µ|w|, where µ is, as before, some mass scale. In terms of

z, this asymptotic behaviour becomes e−2σ ∼ 1/(µz)2 as |z| → ∞. For this

limiting value of |z|, we have W̃L,R → constant, and therefore the effective

potential decays towards zero at large distances from the brane (see Fig-

ure 4.3 for some specific cases). Indeed, it is qualitatively the same as the

volcano potentials, studied in Section 4.1, that arise in the analysis of the

graviton sector. Particles subjected to W̃ eff
L,R are essentially free asymptot-

ically (at large |z|), so there is a continuum of delta-function normalisable
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solutions for all m2
n > 0. We will now show that normalisability of f̃nL,R

implies appropriate normalisability of fnL,R, and conclude that our dimen-

sionally reduced theory contains a continuum of fermions starting at zero

mass.

The f̃nL satisfy an ordinary Schrödinger-like equation with a continuum

of eigenvalues, and therefore are delta-function orthonormalisable:

∫ ∞

−∞
f̃n∗L f̃n

′

L dz = δ(n− n′) . (4.24)

On the other hand, the normalisation condition for the fnL can be derived

by demanding that integrating the action (4.18) over w leads to a properly

normalised, four-dimensional kinetic term for the field ψnL, namely

∫

d4x

∫

dw
√
G
[

iΨΓAe µ
A ∂µΨ

]

⊃
∫

d4x

∫

dn iψ
n
Lγ

α∂αψ
n
L . (4.25)

Here, the integral over n is an integral over the continuum modes. Note

that there will be no mixing of fnL and fn
′

R in the kinetic terms due to the

properties of chiral fermions. Substituting in the expressions for the vielbein

and metric, this condition becomes

∫ ∞

−∞
e−3σfn∗L fn

′

L dw = δ(n − n′) , (4.26)

However, if we write fnL in terms of f̃nL and use dw = e−σdz, we find that

∫ ∞

−∞
e−3σfn∗L fn

′

L dw =

∫ ∞

−∞
f̃n∗L f̃n

′

L dz . (4.27)

So the normalisation integral for the fnL is equivalent to the normalisation

integral for the f̃nL . The same conclusion is reached for the right-handed

profiles fnR. Therefore, there is a continuum of normalisable fermion modes

in the theory, starting at zero four-dimensional mass. Despite this, the zero

modes still form an effective four-dimensional theory at low energies, and

we can understand this as follows.

Flat space corresponds to σ ≡ 0, and we have seen that, in this case, the

low-energy spectrum consists of a finite number of particles with discrete

masses. The reason for this is that the effective potential of the analogue

Schrödinger system, given by equation (4.16), asymptotes to a non-zero
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value. The discrete spectrum corresponds to modes bound in the potential

well, near w = 0, with eigenvalue less that the asymptotic height of the

potential.

Suppose now that σ is non-zero, but grows only very slowly with increas-

ing |w|. In this case, the effective potential of equation (4.23) approximates

that of equation (4.16) near the brane, then decays towards zero as |w| → ∞.

We thus have a localised, non-zero potential in the form of a narrow well

flanked by wide barriers. The low-energy continuum eigenfunctions of such

a system will generically have very small amplitudes at the position of the

well, due to the potential barrier which they must tunnel through when

coming in from the bulk.

So, although arbitrarily light fermions will exist in the theory, their wave-

functions will be strongly suppressed at the position of the brane, where the

zero mode resides. These light modes are effectively “localised at infinity”.

This leads to a very small probability of these low-energy continuum modes

interacting with any zero modes that are present in the model (and there

will, in general, be multiple fermion zero modes; for example, one for each

of the fermions in the standard model).

There is one more generic feature which we expect to occur. Certain dis-

crete energies will resonate with the potential, and the corresponding states

will thus have a much larger probability of being found on the brane. These

are the remnants of the discrete bound states in the flat space case, and

become coincident with them in the zero-gravity limit. What happens if

one of these resonant modes is produced in a high-energy process on the

brane? Any particle produced on the brane will have a wavefunction truly

localised to the brane, and thus cannot correspond exactly to a single mode

ψn, which has a wavefunction oscillatory as |z|→ ∞. Instead such a particle

will be a wavepacket made from the continuum modes, with a Fourier spec-

trum peaked around one of the resonances (see Figure 4.4 for an example).

It is therefore not a true energy or mass eigenstate, and, as the various com-

ponents evolve to an out-of-phase configuration, the wavefunction will leak

off the brane. The particle then has some probability of escaping the brane,

which justifies the moniker “quasi-stable” or “quasi-localised” for the reso-

nant modes. It is these resonant, quasi-localised states that are investigated

by Ringeval et al. [187].

Quantitative calculations confirming the above conclusions will be given
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for a particular toy model in Section 4.4. But first, we will show that the

introduction of a continuum of modes, starting from zero energy, is true also

for the spectrum of a localised scalar field.

4.3 Localised scalar fields with gravity

As well as fermions, it is desirable for model building purposes to be able to

localise scalar fields to the wall. We analysed the modes of a scalar in the

gravity-free case in Section 3.2, and found a similar spectrum to that of a

localised fermion, except that the mass-squared of the lightest scalar mode

depends on parameters in the five-dimensional theory. The lowest scalar

state can even be arranged to have a tachyonic mass, so as to realise the

Higgs mechanism in the low-energy theory. We will now examine the effects

of gravity on these results.

Consider a five-dimensional scalar field Ξ(xM ) described by the combined

action of equation (4.7) and the additional piece

SΞ =

∫

d5x
√
G
[

GMN (∂MΞ)†∂NΞ −H(Φ,Ξ)
]

, (4.28)

whereH specifies the coupling of Ξ to itself and to the domain wall, the latter

of which is a particular classical configuration φj(w) of the five-dimensional

fields Φj(x
M ). The linearised equation of motion for Ξ is given by

∂M

(√
GGMN∂NΞ

)

+
√
GU(φj)Ξ = 0 , (4.29)

where U is independent of Ξ, and defined by ∂H
∂Ξ† = UΞ + O(Ξ2). We solve

this exactly the same way as in the fermion case: by separating variables

Ξ(xµ, w) =
∑

n

ξn(xµ)hn(w) , (4.30)

where each ξn(xµ) satisfies the four-dimensional Klein-Gordon equation

∂µ∂µξ
n +m2

nξ
n = 0 . (4.31)

The analogue of equation (4.20) is then

−hn′′ + 4σ′hn′ + Uhn = e2σm2
nh

n . (4.32)
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We can convert this to a Schrödinger-like equation by again going to the

conformal coordinate z, as well as making the substitution hn = e
3
2
σh̃n.

This yields

−d
2h̃n

dz2
+

[

9

4

(

dσ

dz

)2

− 3

2

d2σ

dz2
+ e−2σU

]

h̃n = m2
nh̃

n , (4.33)

which is to be compared with the fermion version, equation (4.22). Analysing

the asymptotic behaviour of equation (4.33), we find that, as |z| → ∞,

σ ∼ log|z| and U → constant. Thus we see immediately that, as in the

fermion case, the effective potential for the scalar modes decays towards

zero far from the brane. Therefore the low-energy scalar spectrum also con-

tains a continuum of modes of arbitrarily small mass, which are properly

normalisable, as can be shown by a calculation analogous to that described

previously for the fermions.

If U ≡ 0, the equation (4.33) is in fact identical to that satisfied by

four-dimensional gravitons, the latter being equation (4.3). In this case

then, we know that there is a single zero mode, followed by a continuum of

modes starting arbitrarily close to m2
n = 0. The low-lying continuum modes

are strongly suppressed on the brane; for example, their contribution to a

static potential generated by Ξ exchange between two sources on the brane

separated by r, is suppressed by 1/(µr)2 relative to the contribution of the

zero mode (recall that µ is a large mass scale). This is analogous to the RS2

corrections to Newton’s law of gravity, equation (1.50).

For non-zero U , the spectrum is modified from the graviton case, the

significant difference being the possible introduction of resonant modes (in

the absence of fine-tuning of parameters, there will no longer be a zero

mode). As in the fermion case, these resonant modes correspond to the

discrete bound modes in the corresponding gravity-free theory and we expect

the first of these modes to occur for mn ∼ µ. Unlike the fermion case, if

appropriate coupling to the domain-wall is included, such that U makes some

negative contribution to the effective potential, then there may be bound

state solutions with m2
n < 0, as in the gravity-free case where the spectrum

is given by equation (3.45). This signals an instability in the system, and

implies that Ξ is non-zero in the stable background configuration. In this

case we would have to instead solve the coupled Einstein and Klein-Gordon

equations including the Φj fields and Ξ.



134 Chapter 4. Warped gravity and matter spectra

This set-up can be used for interesting model building, in which a sym-

metry is broken on the brane but restored in the bulk. This idea has been

used in the flat space case in the Dvali-Shifman mechanism [57]. We sketch

the reasoning following Witten [214]. Take the scalar potential

H(Φ,Ξ) = (g′Φ2 − u2)Ξ†Ξ + τ(Ξ†Ξ)2 , (4.34)

where we have specialised to a single background field Φ, and we assume

g′Φmin − u2 > 0 such that (Φ,Ξ) = (±Φmin, 0) are still the global minima of

the potential, and we must have Ξ → 0 as |w| → ∞. If Φ forms a domain

wall, then Φ ∼ 0 inside the wall, so that the leading term of H(Φ,Ξ) is

∼ −u2Ξ†Ξ, suggesting that the Ξ = 0 solution is unstable there. This will

show up as a negative eigenvalue m2
n < 0 in equation (4.33), and solving for

a consistent set of background solutions will yield a background Ξ that is

peaked on the brane and tending to zero in the bulk. Putting Ξ in a non-

trivial representation of some gauge group will induce spontaneous breaking

of that group on the brane, a mechanism which can be used, for example,

to realise the standard model Higgs mechanism on the brane; this is what

we shall do in Chapter 5.

In the stable case, U will asymptotically approach some constant posi-

tive value U0. As |z| → ∞, we can approximate the effective potential in

equation (4.33) as

Veff ∼ 1

z2

(

15

4
+
U0

µ2

)

. (4.35)

Again, we can appeal to the results of Csáki et al. [174], where it is shown

that for a potential that behaves asymptotically as α(α+ 1)/z2, the ampli-

tudes of modes with small mn are suppressed by (mn/µ)α−1. Therefore the

coupling to the domain wall actually reduces the effect of the continuum

modes on low-energy physics.

4.4 Toy model calculation

We would like to study a fermion field Ψ(xM ) in a kink background to illus-

trate the existence and suppression of the low-lying continuum modes. For

the background, we shall use the smooth, analytic model from Section 4.1,

where a single, real scalar field Φ(xM ) formed the kink. The action for this

background is (4.7), the scalar potential is (4.10) and the classical solutions
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for σ(w) and φ(w) are given by equation (4.8). We again impose a global

U(1) symmetry Ψ → eiθΨ so that Ψ only couples to the background via a

term gΦΨΨ. For the sake of examining interactions later, we also include

an additional scalar field Ξ(xM ), which U(1) acts on via Ξ → e2iθΞ, to me-

diate interactions between Ψ quanta.3 In addition to the background action

describing gravity and Φ, we have the action for the two matter fields:

SΨΞ =

∫

d5x
√
G
[

iΨΓAe M
A (∂M + ωM )Ψ − gΦΨΨ

+ ∂MΞ†∂MΞ − g′Φ2Ξ†Ξ − u2 Ξ†Ξ − τ(Ξ†Ξ)2 − λ(ΞΨΨc + h.c.)
]

.

(4.36)

Here, the charge conjugate is Ψc = Γ2Γ5Ψ∗. For our background solution to

remain stable, Ξ = 0 must be the stable solution, that is equation (4.33) must

not have any negative eigenvalues. Choosing u2 > 0 suffices to guarantee

this.

The effective Schrödinger-like equation which determines the modes of

the fermion field is found as described in Section 4.2. For various values

of a (which controls the strength of four-dimensional gravity as per equa-

tion (4.9)), the resulting effective potential felt by the left-chiral component

of the fermion is plotted in Figure 4.3. It does indeed asymptote to zero

when gravity is included (a > 0), implying the existence of a continuum of

arbitrarily light modes. There is of course a zero mode which is localised to

the brane — all other modes are, however, oscillatory at infinity.

Using this toy model, we want to quantify our argument that the light

continuum modes do not overly influence physics on the brane. In our model,

the dominant process by which the continuum could be detected is two zero

mode particles annihilating to produce two continuum particles via exchange

of a Ξ quantum, so this is the process we shall consider. As explained at the

end of Section 4.2, a Ξ quantum produced on the brane will not correspond

to a single mass mode, but will be a wavepacket initially localised on the

brane. The creation of such a wavepacket on the brane, and the ensuing

shape of the wavepacket as it evolves over time, will be a complicated issue,

3It is necessary to introduce a field other than Φ, because the fermion zero mode is
chiral, and thus does not interact with Φ via the term gΦΨΨ. Additionally, while the
modes of Φ mix with scalar gravitational degrees of freedom, the global U(1) symmetry
prevents such a mixing of Ξ modes.



136 Chapter 4. Warped gravity and matter spectra

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

-30 -20 -10  0  10  20  30

le
ft

-h
an

de
d 

po
te

nt
ia

l W
 / 

l2

dimensionless conformal coordinate lz

a=0 a=0.04 a=0.4

Figure 4.3: An example of the effective Schrödinger potential, W̃ eff
L , defined by

equation (4.23), which traps a left-handed fermion field. The kink background
configuration is as per equation (4.8). The three plots correspond to no gravity
(a = 0), “weak” gravity (a = 0.04), and “strong” gravity (a = 0.4). The horizontal
line is W = 0. All three plots have gD = 1.4 l for the fermion-kink coupling.

and is not considered here. Instead, we will simply take cosh−1(lz) as a

typical localised profile4 and assume that a Ξ quantum is produced with

the normalised, extra-dimensional wavefunction h̃typ(z) =
√

l/2 cosh−1(lz).

We have computed the Fourier decomposition of h̃typ(z) in terms of the

mass eigenmodes h̃n(z) (the eigenfunctions of equation (4.33)); these Fourier

amplitudes are

Fn =

(∫ ∞

−∞
h̃typh̃

n dz

)2

. (4.37)

The spectrum is sharply peaked at a mass corresponding to the first resonant

mode, as expected, and as shown in Figure 4.4. See Section B.2 for details

of the numerical method used to obtain the extra-dimensional profiles.

We now proceed to calculate the effective coupling of the fermion modes

to this particle in the dimensionally reduced theory. This will give us a

quantitative estimate of the likelihood of continuum fermion modes being

produced by on-brane dynamics through s-channel annihilation. It will also

be a valid estimate for t-channel scattering of localised zero modes with bulk

continuum modes.

4Results should be almost identical for any profile which decays exponentially beyond
|z| ∼ 1/l.
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Figure 4.4: Fourier decomposition of the extra-dimensional profile h̃typ(z) =
√

l/2 cosh−1(lz) in terms of the scalar modes h̃n(z). The latter, being the eigen-
functions of equation (4.33), are indexed by their eigenvalue on the horizontal axis
(rather than the abstract label n). The kink background is given by equation (4.8)
and potential U = g′φ2 + u2. The amplitude is defined by equation (4.37), and the
parameters are a = 0.04, g′D2 = 1.2 l2 and u2 = l2. The typical brane-localised
mode h̃typ(z) is comprised almost entirely of the first resonant mode with eigenvalue
m2

res ≃ 1.9 l2.

The effective coupling constant between the fermion modes of Ψ and the

localised Ξ particle is given by the five-dimensional Yukawa coupling con-

stant λ multiplied by the overlap integral of their extra-dimensional wave-

functions. For the fermion mode with extra-dimensional dependence fn(w),

the coupling will be

λ(4)
n = λ

∫ ∞

−∞
e−4σ htyp(w)

(

fn(w)
)2
dw

= λ

∫ ∞

−∞
e

1
2
σ h̃typ(z)

(

f̃n(z)
)2
dz

= λ

√

l

2

∫ ∞

−∞
e

1
2
σ

(

f̃n(z)
)2

cosh lz
dz . (4.38)

The results for the case a = 0.04 are plotted in Figure 4.5, contrasted with

the results in the gravity-free case.5 It is clear that the four-dimensional

coupling constants go quickly to zero for modes with masses much less than

5Note that what is plotted is really “interaction strength per continuum mode” with
mode energy used on the horizontal axis to label a particular mode number. An integral
over some finite range of modes is required to yield a finite on-brane effect.



138 Chapter 4. Warped gravity and matter spectra

10-20

10-15

10-10

10-5

100

 0  1  2  3  4  5  6  7  8

br
an

e 
in

te
ra

ct
io

n 
de

ns
ity

(mass of mode / l)2

a=0
a=0.04

Figure 4.5: The “interaction per continuum mode”, λ
(4)
n /λ

√
l, for continuum

fermion modes interacting with a typical bound mode on the brane. Both the
gravity-free (a = 0) and “weak” gravity (a = 0.04) cases are shown. The fermion
zero mode remains bound in the presence of gravity (hidden by the gravity-free
plot), while a continuum is introduced for all positive energies. It is clear that at
energies well below l, the continuum modes are essentially decoupled from those
on the brane. The coupling becomes relatively strong for energies greater than the
maximum of the effective potential. The fermion coupling strength is gD = 1.4 l.

the inverse width l of the domain wall. Plots displaying similar resonant

behaviour for fermions localised to a domain wall have been obtained by

Almeida et al. [215].

Such behaviour is of course easy to understand, based on the discussion of

Section 4.2. Modes with energy much less than l see a wide potential barrier

preventing them from penetrating to the brane, where the Ξ particle resides.

At an energy approximately equal to l, we see the first resonant mode, which

does not suffer the generic suppression near the brane. Continuum modes

with energy above the barrier height (∼ 5l2 for the gravity-free case and

∼ 3.5l2 for weak gravity) are free to roam in the vicinity of the brane, hence

their coupling is of order unity. We have explicitly plotted the profiles of a

resonant mode and a (slightly) off-resonant mode in Figure 4.6 to illustrate

the amplification of one, and suppression of the other, on the brane.
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Figure 4.6: The extra-dimensional profiles of the fermion resonant mode at

(E/l)2 ≃ 2.3, and a fermion mode off-resonance by 2.0 × 10−4 in units of (E/l)2.
We are in the “weak” gravity case with a = 0.04. The profiles are not plotted on the
same scale; in reality, each is normalised to the same amplitude at infinity (since
the normalisation condition is dominated by the behaviour of the wavefunction at
infinity). Thus the contrast is much more dramatic even than it appears here.

4.5 Conclusion

In this chapter we looked at the effect the Randall-Sundrum warped met-

ric has on the trapping capability of a kink background, and the resulting

modifications to the spectra of localised matter fields. As a warm-up, we

discussed in Section 4.1 the volcano potential which determines the extra-

dimensional profiles of graviton modes. For such a potential, the graviton

zero mode lies directly beneath a tower of continuum modes. We then pro-

ceeded to show that a similar spectrum of continuum modes is introduced

into the Kaluza-Klein tower of fermion and scalar modes discussed previ-

ously in Chapter 3. We also demonstrated, by studying a toy-model, that the

effect of the gravity-induced continuum can be neglected at low-energies, and

so the phenomenology of our domain-wall set-up is not necessarily counter

to experiment.

In particular, Section 4.2 analysed the behaviour of a fermion field cou-

pled to a generic, gravitating, scalar domain wall in five-dimensions. The

spectrum of the low-energy effective four-dimensional theory was found to

consist of a massless fermion of fixed chirality, and a continuum of states

with all possible masses m > 0. The massless mode is bound to the brane,
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while the continuum modes are oscillatory far from the brane. In Section 4.3,

we showed that a scalar field coupled to the same background also yields a

continuum of arbitrarily light states.

Coupling constants in the low energy theory will be determined by over-

lap integrals between the extra-dimensional profiles of the fields involved.

Generically, continuum modes are strongly suppressed on the brane, and

thus should interact only very weakly with the zero modes and other lo-

calised fields. We have demonstrated this effect (see Section 4.4) by ex-

plicitly computing the overlap integrals for a typical toy model. It should

be possible within specific models to arrange for the integrated effects of

these modes to be small enough, so as not to contradict known low-energy

phenomenology. Nevertheless, at higher energies it may be important to

consider the effects of such modes.

There will be a finite number of resonant modes which will manifest

on the brane; these are the remnants of the bound states of the analogue

Schrödinger system in the non-gravitating case. The lowest of these modes

will have a mass approximately equal to the inverse width of the domain

wall, which would need to be sufficiently large in a realistic model.

Note that we have assumed throughout that the four-dimensional metric

on the brane is Minkowskian. Cosmologically, it may be desirable to allow it

to be de Sitter; in this case, by dimensional analysis, the continuum matter

modes will begin at a mass m ∼
√

Λ4, where Λ4 is the effective cosmological

constant on the brane. This effect is demonstrated explicitly for gravitons by

Karch and Randall [118]. For our universe, such a shifting of the beginning

of the continuum modes is very small, and would be negligible for collider

phenomenology. A more drastic consequence of a de Sitter, or any non-

Minkowskian, spacetime is detailed in Chapter 7.

The analysis presented in this paper would form the basis of an investi-

gation of the low-energy phenomenology of a realistic model; for example,

of the model we present in Chapter 5.
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The SU(5) model

Having developed and discussed the machinery for constructing a

domain-wall brane, for confining scalars and chiral fermions, and for

assimilating the Randall-Sundrum warped metric so that gravity is also

localised, we proceed, in this chapter, to write down the standard model

localised to a brane. Actually, the model presented here will not be exactly

the standard model: our action is invariant under a local SU(5) symmetry,

and we consider only a single generation of fermions (although the extension

to three generations is straightforward). We are also going to ignore the is-

sue of neutrino mass. Nevertheless, we believe that our SU(5) domain-wall

brane model, extended to three generations, is the simplest way to have the

standard model emerge from an effective, field-theory model of an infinite ex-

tra dimension. Indeed, our construction introduces only the bare minimum

of scalar fields necessary to generate the requisite domain wall, and these

fields end up playing an additional role in the splitting of the fermions and

Higgs fields in the extra dimension, nullifying the usual me = md relation

of minimal, four-dimensional SU(5) models.

Our focus in this chapter is on model-building rather than detailed phe-

nomenology. We are going to give a general overview of our domain-wall

brane model and explain the dynamics behind the formation of the kink

background. We shall then provide an explicit example of such a back-

ground, and discuss how the elements of the usual, four-dimensional stan-

dard model emerge. This will hopefully provide convincing evidence that our

model has good phenomenology, and serves to inspire a more comprehensive

phenomenological study.

141
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As has been the theme throughout this thesis so far, our model is moti-

vated by a desire to treat extra-dimensions on the same footing as existing

dimensions. Our single, extra, spatial dimension is therefore infinite in ex-

tent, and the action of our model respects five-dimensional Poincaré invari-

ance. The four dimensions that constitute our observable universe are then a

low-energy approximation, valid only because of the dynamical formation of

a domain-wall brane. This wall is created jointly by a real singlet-Higgs field

η(xM ) configured as a kink, and an SU(5) adjoint-Higgs field χ(xM ) that

is non-zero inside the wall, but vanishes asymptotically far from the brane.

Five-dimensional fermions Yukawa coupled to the background scalar fields

provide localised, four-dimensional, chiral zero modes, as per the set-ups de-

tailed in Chapters 3 and 4. The standard model Higgs doublet is similarly

localised using the techniques developed in these earlier chapters. Localised

gravity is generated via the Randall-Sundrum warped metric, generalised to

the case where the brane is smooth and extended in the extra dimension.

One thing that has remained outstanding in the developments made

so far in this thesis is the mechanism by which gauge fields are to be lo-

calised to the domain wall. In Chapter 2 we played with a toy model which

allowed for semi-localisation of U(1) gauge fields using a standard field-

theoretic analysis. As far as we are aware, it does not seem possible to get

such a field-theoretic model to work and to properly localise massless gauge

fields. We are therefore going to resort to using the Dvali-Shifman (DS)

mechanism [57], outlined in Section 1.3.3, which relies on the confinement

property of non-Abelian gauge theories — a non-perturbative feature which

allows only qualitative statements to be made (unless one moves into the

arena of numerical lattice-gauge-theory). Actually, phrasing it as ‘resorting’

to the DS mechanism is really underplaying the situation: DS requires a

larger gauge symmetry in the bulk, larger than the symmetry localised to

the brane, leading immediately to the decision that our full action be SU(5)

invariant. The standard model gauge group, being a maximal subgroup of

SU(5), is then exactly the symmetry group which is localised to the brane!

As we have already mentioned, we believe our model to be the minimal,

infinite extra-dimensional, field-theory model which subsumes the standard

model, and this belief is supported by the seeming necessity of DS and the

subsequent simplification of the gauge and fermion sectors inherent in using

a grand unified theory.
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Aside from its calculational complexities, the DS mechanism is yet to

be proven to work in the five-dimensional context. Pure Yang-Mills theory

is not renormalisable in more than four-dimensions, and, as a consequence,

the physics of five-dimensional confinement — the underlying feature of our

implementation of DS — is not properly understood. We shall show in this

chapter that if one takes the DS mechanism to work in five-dimensions,

then our domain-wall-localised standard model follows readily. The gauge

symmetry is then required to be SU(5) in the bulk, spontaneously broken,

via the adjoint χ, to

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y (5.1)

inside the domain wall. Provided that the SU(5) theory in the bulk ex-

hibits confinement, the standard model gauge bosons are thus localised to

the interior of the domain wall. We hope that our model spurs rigorous

studies of the DS mechanism in five-dimensions, to either confirm it or dis-

prove it. Were it to be confirmed, then our general model-building set-

up, exemplified in this chapter, would provide a clear pathway to the con-

struction of phenomenologically-realistic effective theories of domain-wall-

localised fields.

Inherent in our model is the split fermion mechanism [67]. The five-

dimensional bulk fermions Ψ5 and Ψ10, in non-trivial representations of

SU(5), are coupled to both background scalar fields η and χ. When χ breaks

the SU(5) gauge symmetry to the standard model gauge group, components

of Ψ5 and Ψ10 with different U(1)Y hypercharges are localised to different

positions along the bulk direction. The Higgs doublet of the standard model

emerges from the bulk Higgs Φ, along with its colour triplet SU(5) partner,

and they are localised and split in analogy with the fermion sector. There

is some control over the structure and extent of the splitting of the fermion

and Higgs fields, and we can use this to our advantage to, for example,

suppress coloured-Higgs-induced proton decay. Furthermore, because four-

dimensional fermion masses are computed from overlap integrals of profile

functions, and because these profiles are different for fermions with different

hypercharges, our model automatically avoids the usual SU(5) mass relation

me = md.

There is an important loose end that we are not going to address in this
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thesis: gauge coupling constant unification. For such an analysis to proceed,

we must look at the three-generation version of our model, since it is the

full spectrum of particles, and their associated Kaluza-Klein excitations,

that will determine the running of the coupling constants. We shall expand

on this point in Section 5.3.1.

In Section 5.1 we review the DS mechanism, and include a discussion of

the open questions related to confinement in five-dimensional, non-Abelian

gauge theories. Our SU(5) model is described in Section 5.2, and we explain

how the domain-wall background forms and how the standard model can

be recovered. In Section 5.3, we provide an explicit, analytic example of a

background configuration, and show how the split fermion and split Higgs

mechanism works. We also look at the effective electroweak sector, present

formulae for the fermion masses, and outline the effect of gravity in the

form of the warped metric. Section 5.4 discusses the relationships among

the various scales in our model, and Section 5.5 concludes the chapter.

5.1 The Dvali-Shifman mechanism

We have given an overview of the DS mechanism in Section 1.3.3. It seems

that this is the most plausible way of localising gauge bosons to a domain

wall. The mechanism requires a confining non-Abelian gauge theory in the

bulk, where the symmetry G is broken to a subgroup group H inside the

domain wall. Massless gauge bosons corresponding to H are then localised

to the region where the symmetry is broken; they are localised to the wall.

Since we are attempting to place the standard model on a domain wall, the

minimal choice is to take G = SU(5) and H = SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,

which is exactly what we shall do in this chapter. Having been led to such

an appropriate choice of gauge symmetry, and drawing on the mechanisms

for fermion, scalar and gravity confinement, the precise construction of our

extra-dimensional SU(5) model follows quite naturally.

Before we present the model, let us make some specific remarks about

DS and gauge field confinement. We have seen examples of how effec-

tive four-dimensional couplings arise from integrals over products of extra-

dimensional profiles; for example, equation (3.16). In general, modes that

have different profiles will have different four-dimensional couplings. Imag-

ine that the gauge coupling constant of (say) U(1)Y was an effective quantity,
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computed by evaluating such an overlap integral of the profiles of fermions

and the gauge field. Each particle in the effective four-dimensional theory

will potentially have a different coupling to the four-dimensional gauge field,

which is disastrous, since we know that ratios of the hypercharge Y have

definite values. If the five-dimensional fermions already begin with the cor-

rect hypercharge (in our SU(5) model they do because the bulk fermions are

non-trivial SU(5) multiplets), then the overlap integrals for all the modes

(or at least the zero modes) must be equal to each other in order that the

hypercharge ratios be preserved. This could be accomplished by severely

restricting the layout of the profiles. For example, in models with compact

extra-dimensions, one can give the zero modes of the gauge fields a constant

profile [67]. For the case of an infinite extra-dimension, we have seen that

the ground state mode of a localised field has a Gaussian-shaped profile,

and so it would seem nearly impossible to organise gauge overlap integrals

that were equal for all fermions. It seems necessary therefore that a suc-

cessful mechanism of gauge field localisation involve a non-standard way of

computing effective gauge coupling constants. For DS, this is hidden in the

non-perturbative physics of confinement.

Confinement seems to be the key to the DS mechanism. In a four -

dimensional spacetime, the truth of DS is well established [58, 60, 59], and

we shall review, briefly, the arguments. Following Dvali and Shifman [57],

let us consider the simple toy example of G = SU(2) broken, on the wall, to

H = U(1). Place a U(1) source charge inside the wall. The bulk respects

the non-Abelian SU(2) symmetry and is in the confinement phase, and so

the electric field lines of the source charge cannot penetrate this region.

Instead, the field lines are repelled from the domain-wall-bulk interface and

the effective dimensionality of the Coulomb field is thus reduced by one.

If we adopt the ’t Hooft-Mandelstam proposal that confinement arises from

the magnetic dual of superconductivity [216, 217], then this repulsion of field

lines from the interface is understood from the dual Meissner effect [58, 60].

Now place the U(1) source charge in the bulk. Electric field lines em-

anating from the source are, by confinement, expelled from the bulk. The

most energetically favourable configuration is that of an electric flux tube

that starts at the source and ends on the domain wall [58, 60, 59]. Once

inside the wall the field lines are able to spread out in the plane of the wall

because G has broken to H, which is no longer a confining group. The flux
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tube acts to funnel the bulk-originating field lines back to the domain wall,

giving the illusion that the charge is actually located entirely within the wall.

The electric field configuration looks the same at large distances inside the

wall irrespective of the position of the source in the bulk. Upgrading this

picture to the situation where the source is extended in the bulk direction —

it has an arbitrary bulk profile — it follows that the long range Coulomb

field is independent of how the profile depends on the coordinate perpen-

dicular to the wall (which is, in our case, the extra dimension). This is the

physics responsible for ensuring that different particles, with different pro-

files, couple to the gauge fields with equal strength; we have gauge coupling

universality. We shall assume that this result holds in our five-dimensional

implementation of DS: that the different extra-dimensional profiles of the

trapped matter fields do not preclude the gauge universality of H.

The extension to a non-Abelian H, which is what we shall need for

the standard model gauge group, is straightforward: the arguments above

generalise to the case of chromoelectric field line expulsion from the bulk.

Another perspective on the localisation physics is provided by the mass

gap of non-Abelian theories [57]. In the bulk, because of confinement, the

gauge bosons of H cannot propagate alone, but instead form constituents

of propagating, massive G glueballs. In the G = SU(2) and H = U(1)

example, the U(1) gauge boson, which is both massless and free inside the

wall, must somehow incorporate itself into a massive SU(2) glueball if it is to

propagate into the bulk. But such an event must be paid for in terms of the

energy required to bridge the mass gap. Thus any U(1) gauge boson inside

the wall is dynamically constrained to remain there. If H has non-Abelian

factors that are themselves in confinement phase inside the wall, then the

mass gap suppression corresponds to the H glueballs inside the wall being

less massive than the G glueballs in the bulk.

These arguments are rather convincing because they rest on the well-

established confinement property for asymptotically-free non-Abelian gauge

theories in 3+1-dimensions. In the 4+1-dimensional case, the DS mechanism

is a conjecture because 4+1-dimensional confinement (or lack thereof) is not

properly understood. The main issue is that pure Yang-Mills theory is not

renormalisable in 4 + 1-dimensions (or larger). At the level of lattice gauge

calculations, this corresponds to the lack of a physical limit when taking

the lattice spacing to zero. To expand on this point, it is known that 4 + 1-
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Figure 5.1: Plot of the average plaquette (defined in Creutz [218]) as a function
of the inverse lattice temperature β, which is proportional to the inverse of the
square of the gauge coupling constant. The plot in (a) is for SU(2) Yang-Mills
(computed to check against Figure 1 of [218]), and (b) is for SU(5) Yang-Mills. The
calculations were performed in 4 + 1-dimensions with 35 lattice points. Each point
represents 300 sweeps of the lattice, and the total length of the error bars indicate
two standard deviations. A phase transition is discernible in both of these plots,
giving good evidence that the corresponding gauge theories exhibit confinement in
five-dimensions.

dimensional SU(2) has a first order phase transition for finite lattice spacing;

see Creutz [218]. We have verified this conclusion for 4 + 1-dimensional

SU(5) (see Figure 5.1) and so presumably SU(5) has a confining phase for

sufficiently large values of the gauge coupling constant. This analysis cannot

be extended to the continuum limit, and so we must be content with 4 + 1-

dimensional SU(5) exhibiting confinement below a relevant cutoff of the

theory. Thus we consider 4+1-dimensional DS to be an effective mechanism,

valid below this cutoff, which does the job of confining gauge fields to the

domain wall. As we remark below, any field theoretic brane-world model is

non-renormalisable and hence must be defined with an ultraviolet cutoff, so

in our context we do not need to take the continuum limit.

To the best of our knowledge, the DS mechanism has not been directly

checked in 4+1-dimensions, which would require more than just an analysis

of the phase structure of pure Yang-Mills theory. But we are encouraged by

lattice gauge calculations in 2+1-dimensions (see Laine et al. [219]) which do

verify the mechanism. We shall assume that it works also in 4+1-dimensions,

and show that realistic model building is then quite possible.
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5.2 The model

As stated at the start of Section 5.1, the DS mechanism immediately mo-

tivates that the bulk should respect at least an SU(5) gauge symmetry.

Since we would like to construct a “minimal” domain-wall-localised stan-

dard model, it would be pertinent to have the bulk, and the action, respect

exactly an SU(5) symmetry. There are in fact no model-building obstacles

to making this minimal choice, and DS implies that the field used to break

SU(5) to GSM is also the field that confines the standard model gauge bosons

to the wall. In Chapter 6 we are going to relax this minimality condition

and consider an E6 invariant action breaking to SO(10) in the bulk, and

SU(5) on the brane.

For now, we are concerned with our SU(5) domain-wall model. The

spacetime coordinate is xM = (xµ, w) with M = (0, 1, 2, 3, 5), µ = (0, 1, 2, 3).

The gauge field is XM (xN ) = XM
a (xN )ta, where ta (a = 1, . . . , 24) are the

generators of SU(5), normalised to Tr(tatb) = 1
2δab. The field strength tensor

is FMN
a and g5 will be the gauge coupling constant. The five-dimensional

matter content is:

scalars: η ∼ 1 , χ ∼ 24 , Φ ∼ 5∗ , (5.2a)

fermions: Ψ5 ∼ 5∗ , Ψ10 ∼ 10 . (5.2b)

The scalar field η(xM ) is real, χ(xM ) is conveniently represented as a 5 ×
5 Hermitian traceless matrix, while Φ(xM ) is a fivefold column vector of

complex fields. In four-dimensions chiral spinors are eigen-spinors of the

Dirac matrix γ5, but in five-dimensions γ5 is used as one of the generators

of the Clifford algebra, and is associated with Lorentz transformations in the

extra dimension. Chirality does therefore not exist in five-dimensions, and

both Ψ5(x
M ) and Ψ10(x

M ) are Dirac fields, represented here by a fivefold

vector and 5×5 antisymmetric matrix respectively. As mentioned previously,

we are only considering one quark-lepton family here. This is for the sake of

simplicity, and so we are able to better explore the model-building machinery

related to the dimensional reduction. Once we have this under control, it is

straightforward to generalise our model to three generations. The neutrino

mass question is also deferred to future work.
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Under a local U ∈ SU(5) transformation, the matter fields behave as

η → η , χ→ UχU † , Φ → U∗Φ , (5.3a)

Ψ5 → U∗Ψ5 , Ψ10 → UΨ10U
T . (5.3b)

We also impose a discrete, reflection symmetry which serves to facilitate the

formation of a stable domain wall. This symmetry acts as

w → −w , (5.4a)

η → −η , χ→ −χ , (5.4b)

Ψ5 → iΓ5Ψ5 , Ψ10 → iΓ5Ψ10 , (5.4c)

with XM and Φ left untouched. Here, the five-dimensional (flat-space) Dirac

matrices are ΓA = (γα,−iγ5) and satisfy {ΓA,ΓB} = 2ηAB , where ηAB =

diag(+1,−1,−1,−1,−1).

We have given the field content and the symmetries. Our model also

includes gravity and the full action is

S =

∫

d5x
√
G
[

M3
∗ (−R− 2Λ) + T − YDW − Y5 − V

]

, (5.5)

where G is the determinant of the metric, M∗ the five-dimensional grav-

itational mass scale, R the scalar curvature and Λ the bulk cosmological

constant. Note that we are using the time-like sign conventions of Sec-

tion A.3. The rest of the action consists of all the gauge invariant and

discrete-reflection-symmetry invariant kinetic and potential terms that can

be constructed using the gauge and matter fields. These terms include min-

imal coupling to gravity. For the kinetic terms we have

T = −1

4
GMNGPQTr (FaMPFaNQ)

+
1

2
GMN∂Mη∂Nη +GMN Tr

[

(DMχ)†DNχ
]

+GMN (DMΦ)†DNΦ

+ iΨ5Γ
Ae M

A DMΨ5 + Tr
(

iΨ10Γ
Ae M

A DMΨ10

)

. (5.6)

The symbol DM stands for the appropriate general-coordinate covariant

and gauge-covariant derivative. For the fermions, this derivative includes

the spin-connection, and for this we require the vielbein e M
A ; see the dis-
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cussions in Section 4.2 and Section A.4. YDW has the Yukawa couplings of

the fermions to the kink background fields η and χ,

YDW = h5ηΨ5Ψ5η + h5χΨ5χ
TΨ5

+ h10η Tr
(

Ψ10Ψ10

)

η − 2h10χ Tr
(

Ψ10χΨ10

)

, (5.7)

and Y5 is the SU(5) Yukawa Lagrangian used to generate quark and lepton

masses:

Y5 = h−(Ψ5)cΨ10Φ + h+ǫ
ijklm(Ψ10)cij(Ψ10)kl(Φ

∗)m + h.c. (5.8)

The last term is written in SU(5) index notation with ǫijklm the totally

anti-symmetric tensor. Charge conjugation of five-dimensional fermions is

defined by Ψc = Γ2Γ5Ψ∗. Finally, we have the Higgs potential V = Vηχ +

Vrest, where

Vηχ = (cη2 − µ2
χ)Tr(χ2) + λ1ηTr(χ3) + λ2

[

Tr(χ2)
]2

+ λ3 Tr(χ4) + l(η2 − v2)2 , (5.9a)

Vrest = µ2
ΦΦ†Φ + λ4(Φ

†Φ)2 + λ5Φ
†Φη2 + 2λ6Φ

†Φ Tr(χ2)

+ λ7Φ
†(χT )2Φ + λ8Φ

†χTΦη . (5.9b)

To summarise, the model contains the gravitational parameters M∗ and Λ,

the gauge coupling g5, the fermion Yukawa constants h5η , h5χ, h10η , h10χ,

h− and h+, and the scalar parameters c, l, v, µχ, µΦ and λ1–8.

Disregard gravity for the moment and consider the ultraviolet behaviour

of our model. Since we are in five-dimensions, we cannot renormalise the

theory, and so, as is usual in these kinds of models, we assume an implicit

ultraviolet cut-off ΛUV. We do not commit to the nature of physics beyond

this scale, and have nothing to say about how our model emerges as the

low-energy limit of the putative ultraviolet completion; we simple assume

that it does. In line with the discussion at the end of Section 3.1.1 regard-

ing renormalisable terms at the effective level, our action is perhaps best

considered as the set of lowest-dimensional operators, consistent with the

given symmetries, of a non-renormalisable, effective five-dimensional theory.

The relationship of ΛUV to the other scales in the model is discussed in

Section 5.4.
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Now that we have the theory described in full, we turn to a discussion of

how the domain-wall background forms, the ground state matter modes that

are localised to the wall, and how these modes result in an effective, four-

dimensional standard model. A specific background configuration, along

with explicit solutions for the extra-dimensional profiles, will be presented

in Section 5.3. For now, we outline these features in general terms.

The first thing to do is find a background configuration for η, χ and the

metric which solves Einstein’s equations and the Euler-Lagrange equations.

Of course, we need to specify boundary conditions in order to pick out

solutions with the requisite Randall-Sundrum, domain-wall structure. The

ansatz for the metric is, as usual, the warped form

ds2 = e−2σ(w)ηµνdx
µdxν − dw2 , (5.10)

with asymptotic behaviour σ(w) → ∼ |w| as |w| → ∞. The proportionality

constant for the asymptotic behaviour of σ(w) will depend on the bulk cos-

mological constant Λ, and the usual Randall-Sundrum fine-tuning condition

must be imposed to ensure a Minkowski brane. This will, in turn, relate Λ

to the width and height of the kink solution.

Having the Randall-Sundrum warped metric guarantees localised gravity.

To localise the fermions and Higgs, we need η to form a kink, and we need χ

to form a Gaussian-like profile, centred on the domain wall, to implement the

DS mechanism and localise the gauge bosons.1 Because we aim to localise

the standard model, we also need to make sure that χ breaks SU(5) in the

direction of GSM. Recall that χ is a 5× 5 matrix that transforms as the 24

of SU(5), so we can write it as χ = χata. Let us define the first generator t1

to be the component associated with the weak-hypercharge generator:

t1 =
1

2
√

15
diag(2, 2, 2,−3,−3) . (5.11)

Our desired symmetry breaking pattern can then be achieved by choosing to

have, at the background solution level, χ1 6= 0 and the rest of the components

1As pointed out by Dvali and Shifman [57], as well as localising gauge bosons the
confining bulk can localise gauge non-singlet fermions and scalar fields. However, for our
application, we have to retain the seemingly redundant localisation-to-a-kink mechanism.
The DS mechanism on its own will not suffice because it will localise vector-like fermions,
not massless chiral fermions. The kink configuration is necessary for the spontaneous
generation of chirality in the four-dimensional effective theory.
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χ2–24 vanishing.

Since w is the extra dimension, we look for background solutions where

η and χ1 depend only this coordinate, as is the case for the metric function

σ(w). The boundary conditions for the scalar fields are

η(w = −∞) = −v , η(w = +∞) = +v , (5.12a)

χ1(w = −∞) = 0 , χ1(w = +∞) = 0 . (5.12b)

These values correspond to degenerate global minima of Vηχ. The spon-

taneously broken reflection symmetry ensures topological stability for the

domain wall configuration.

For a significant region of parameter space, the coupled Einstein’s and

Klein-Gordon equations (not given) admit numerical solutions compatible

with our ansatz for the metric and our choice of scalar-field boundary con-

ditions. The solutions have σ a smooth, even function of w with Randall-

Sundrum asymptotic behaviour, η forms the usual kink profile, and χ1 is

Gaussian shaped. The matter fields Ψ5, Ψ10 and Φ propagate in this back-

ground, and appropriate Kaluza-Klein towers of modes are induced. Our

classical analysis of the associated mode profiles is encumbered in this par-

ticular model by the non-perturbative physics of the DS mechanism. We

are going to assume that such difficulties can be avoided, at least in the first

instance, because the SU(5) confinement dynamics are suppressed within

the wall. Outside the wall, the non-perturbative SU(5) physics makes calcu-

lating impossible, at least in the absence of dedicated lattice-gauge-theory

machinery. Since the localisation profiles of the Kaluza-Klein modes are

peaked near the centre of the wall, where the bulk symmetry is broken, ig-

noring the non-perturbative corrections is approximately valid. We continue

this discussion in Section 5.3.1.

Assuming that it is safe to do so, analysis of our model proceeds by

performing a general Fourier expansion of the fermion and Higgs fields. For

now, we are just going to be interested in the lowest modes of the tow-

ers: the fermion zero modes, the Higgs-doublet tachyonic mode, and the

lowest coloured-scalar mode. The two fermion multiplets contain precisely

the fermion content of the standard model, as per equation (1.12). Each

individual Dirac spinor will be localised via the kink profile η in the usual

way, but, due to the different U(1)Y hypercharges, each component couples
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differently to the additional SU(5)-charged scalar χ1. This additional cou-

pling is large enough to significantly influence the effective trapping poten-

tial that appears in the Schrödinger-like equation for the extra-dimensional

profiles. Therefore, the different components of Ψ5 and Ψ10 feel different

background configurations, and their Kaluza-Klein towers are subsequently

localised at different positions in the extra dimension — the split fermion

mechanism [67], as introduced in Section 1.3.4. The terms responsible for

the fermion localisation come from YDW, and the associated parameters are

h5η, h5χ, h10η and h10χ.

The splitting phenomenon also applies to the Higgs multiplet Φ. This

field contains the five-dimensional Higgs-doublet Φw(xM ) along with the

five-dimensional coloured-scalar Φc(x
M ). These two components have dif-

ferent U(1)Y hypercharges, and, by the previous argument, are localised to

different positions inside the domain-wall region. Here, the λ5–8 terms in

Vrest control this trapping, and the parameters can be adjusted to shift the

location of the modes. The additional parameter µ2
Φ in equation (5.9b) is

used to manipulate the overall height of the effective trapping potential and

obtain a tachyonic ground state mode for Φw; see equation (3.45) and the

discussion towards the end of Section 3.2.2. Let the lowest modes of Φw

and Φc have mass-squared m2
w and m2

c respectively. It turns out that there

is sufficient parameter freedom to allow both m2
w < 0 and m2

c > 0, thus

setting the stage for an effective Mexican-hat potential for the associated

lowest mode φw(xµ), while keeping the lowest coloured-scalar mode φc(x
µ)

massive. This ensures that electroweak symmetry breaking can be imple-

mented on the brane, giving masses to the chiral, fermion zero modes, while

SU(3)C remains an exact symmetry.

We can now see how natural resolutions arise to some of the usual prob-

lems with an SU(5) grand unified theory. The mass relation me = md is

not obtained because the four-dimensional Yukawa couplings, and hence the

masses of the four-dimensional modes, depend on overlap integrals in the

extra dimension. These will be different for fermions with different U(1)Y

hypercharge (like e and d) because of the layout of the fermion localisation

profiles. The splitting of the profiles can also alleviate the issue of proton

decay. The coloured-scalar φc can induce such a decay through the reaction

p→ π0e+ via the Yukawa terms uR(eR)cφ∗c and dR(uR)cφc. This effect can

be suppressed by making the relevant profile overlaps very small. For exam-
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ple, splitting uR and dR so that that they overlap exponentially little would

suffice; see, for example, Coulthurst, McDonald and McKellar [220].

In Chapter 4 we discussed how the spectrum of localised matter fields

is modified in the presence of Randall-Sundrum-like warped gravity. These

effects will be present in our SU(5) model. In particular, a continuum of

fermion and Higgs fields will be present, starting at zero four-dimensional

mass, although they will only couple very weakly to the modes that are

bound to the brane. The question of the influence that a warped metric has

on the gauge boson spectrum is left as work for the future, but we suspect

the effect to be negligible since, in the region close to the domain wall, the

scale of gravity is far weaker than the physics related to the gauge boson

localisation.

The next section gives an explicit, analytic form for the background

configuration which allows us to give concrete expressions, and plots, for

the profiles of the ground state fermion and Higgs fields. We shall also

discuss the effective electroweak sector and derive the fermion masses.

5.3 Aspects of the model

The exposition of our theory, which is defined by equation (5.5), begins with

gravity turned off, and we follow the general mode analysis of Chapter 3.

This will allow us to focus on the purely particle-physics aspects of the

model. Modifications due to gravity are then discussed towards the end, in

Section 5.3.3. The gravity-free background consists of the configuration of

the coupled scalar fields η and χ1, which generally take the form of a kink

and Gaussian, respectively. Purely for the sake of giving a concrete, analytic

example, we can impose the parameter conditions

λ1 = 0 , (5.13a)

2µ2
χ(c− λ̃) + (2cλ̃ − 4lλ̃− c2)v2 = 0 , (5.13b)

with λ̃ ≡ λ2 + 7
30λ3. This permits the solution

η(w) = v tanh(kw) , (5.14a)

χ1(w) = A cosh−1(kw) , (5.14b)
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where k2 = cv2 − µ2
χ and A2 = (2µ2

χ − cv2)/λ̃. As before, the adjoint

field χ = χata has, at the classical solution level, all components except χ1

vanish. Since χ1 is associated with t1, defined by equation (5.11), it induces

SU(5) → GSM within the domain wall, a region with width of order 1/k.

By the DS mechanism, the gauge bosons associated with GSM are localised

to this small region. For the field η, its form is the canonical kink solution,

and serves to trap the fermions Ψ5 and Ψ10, and the Higgs Φ, to the brane.

We have checked numerically that configurations such as equation (5.14)

are perturbatively stable against the formation of additional, non-zero χ

components.

With these background solutions, we now proceed to provide explicit

forms of the matter trapping potentials, and give examples of how the split

fermions, and split Higgs, can be arranged in the extra dimension.

5.3.1 The fermion and Higgs fields

The five-dimensional fermions couple to the background w-dependent scalar

fields as per YDW, and a Kaluza-Klein tower of four-dimensional modes is

induced. A full mode decomposition analysis involves writing a bulk fermion

field as a sum over the product of four-dimensional fields and their associated

profiles. The Dirac equation is then used to solve for the forms of the profiles.

So far in this thesis we have come across singlet fermions, which are just

usual Dirac spinors, and the extra-dimensional profile of each component of

the spinor satisfies an identical differential equation. Thus we were justified

in performing the expansions of equations (3.56) and (4.14), where a single

profile multiplies each component of the spinor. For the case at hand, as we

have discussed already, the extra-dimensional profiles of fermion components

with different hypercharges are going to solve different equations. Thus we

must expand each hypercharge component of the multiplets Ψ5 and Ψ10

with different profile functions. In what follows, the notation for one of

these five-dimensional components is ΨnY (xM ), where n = 5, 10 and Y is

the hypercharge. The same story is true for the scalar Φ, and here the two

components are Φw and Φc.

One may wonder about the validity of a full mode decomposition in the

presence of the non-perturbative physics of the DS mechanism, a discussion

which we began in Section 5.2. Consider the case of the expansion of a

generic scalar: Ξ(xM ) =
∑

n ξn(x
µ)kn(w). From a mathematical point of
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view, the set of mode functions kn is just some complete set of functions that

permits the decomposition of Ξ without loss of generality, and so one has

the usual freedom to change basis by changing the mode-function set. This

is a pertinent observation for theories that employ the non-perturbative

quantum-field-theoretic DS mechanism. Say Ξ is a gauge singlet, and is

hence immune to DS. Then our mode decomposition, whereby the ξn satisfy

the massive Klein-Gordon equation, constitutes a “sensible” choice of basis

functions, where “sensible” means that each (bound) profile kn corresponds

to a physical, propagating state in the effective four-dimensional theory.

Now take Ξ to transform non-trivially under the gauge symmetry and to

feel the non-perturbative nature of the bulk. Although it may not be a

“sensible” way of doing things, there is no problem in using the same mode

decomposition that we used for the singlet field, because that is simply a

mathematically-valid recasting of Ξ as an infinite set of ξn components. If

the bulk is indeed in confinement phase, then the gauge non-singlet ξn fields

will not propagate as free particles, so their physical interpretation will be as

constituent particles. This is conceptually no different from expressing the

QCD Lagrangian in terms of quarks and gluons even though the propagating

states are hadrons.

We are not actually going to perform a full mode decomposition for

the five-dimensional fields in our model. Instead, we are just interested

in the physics that emerges from the fermion zero modes and the ground

state Higgs modes. These low-energy modes have profiles which are sharply

peaked inside the domain wall, and so to a first approximation we need not

be concerned with interpretive complications that arise because of the non-

perturbative bulk. As we have just emphasised, we are free to choose any

set of basis functions (profiles) that we like, and we are going to choose those

that have a physically sensible interpretation in the non-DS scenario, and,

furthermore, we are only going to consider the ground state mode of this

basis. Our assumption is that in doing so we capture the essential physics

of the low-energy, four-dimensional effective theory, and that taking into ac-

count the higher modes and a proper treatment of DS does not significantly

alter our results.

Let us first consider the fermions. To analyse the localisation of the

chiral, zero mode, the full mode expansion is unnecessary. Instead, it suffices

to solve the Dirac equations with a simple separation of variables for each
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hypercharge component:

ΨnY (xµ, w) = fnY (w) ψnY,L(xµ) , (5.15)

where the ψnY,L(xµ) are four-dimensional, massless, left-chiral fields: they

satisfy iγα∂α ψnY,L = 0 and γ5ψnY,L = −ψnY,L. These fields have weak-

hypercharge Y and their corresponding extra-dimensional profiles are fnY (w).

With this separation, the Dirac equations for the five-dimensional fermion

components are

[

iΓA∂A − hnηη(w) −
√

3

5

Y

2
hnχχ1(w)

]

ΨnY (xµ, w) = 0 . (5.16)

As pointed out earlier, n = 5, 10 and Y is the U(1)Y hypercharge associated

with the component ΨnY . Equation (5.16) is manifestly different for the

various components, vindicating our earlier claim that the SU(5) structure

of our model automatically gives different localisation points and profiles to

the different standard model components. The zeroes of

bnY (w) ≡ hnηη(w) +

√

3

5

Y

2
hnχχ1(w) (5.17)

are the localisation centres of the associated profiles, these profiles being

fnY (w) ∝ e−
R w

0
bnY (w′) dw′

. (5.18)

Here, the proportionality constant is determined by normalising f2
nY to

unity. To localise four-dimensional, left-chiral fields, all the bnY must pass

through zero with positive slope; this constrains the signs and magnitudes

of the parameters hnη and hnχ. Sample solutions of the split profiles fnY

are given in Figure 5.2.

Moving on to the localisation of the Higgs field Φ, we are again only

interested in the lowest mode of the full Kaluza-Klein tower, and so perform

a simple separation of variables for the doublet and triplet components:

Φw,c(x
µ, w) = pw,c(w) φw,c(x

µ) , (5.19)

where φw,c(x
µ) are required to satisfy a massive four-dimensional Klein-

Gordon equation with mass-squared parameters m2
w,c. The two profiles,
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Figure 5.2: Typical extra-dimensional profiles fnY (w) for the fermion components
contained in the 5∗ (top) and the 10 (bottom). The fields η and χ1 are as per
equation (5.14) and we are plotting equation (5.18) with parameter choices v =
A = 1, hnη = 1, h5χ = 6 and h10χ = 1. The profiles are normalised such that
∫

dwf2
nY (w) = 1.

pw(w) and pc(w), obey the Schrödinger-like equation

−d
2pw,c(w)

dw2
+WY (w)pw,c(w) = m2

w,cpw,c(w) , (5.20)

with a weak-hypercharge-dependent effective potential

WY (w) = µ2
Φ + λ5η

2 + λ6χ
2
1 +

3Y 2

20
λ7χ

2
1 +

√

3

5

Y

2
λ8ηχ1 . (5.21)

The hypercharges are: Y (φw, φc) = (−1, 2
3 ).

We can actually determine the full spectrum of localised and delocalised

Φ modes by finding all the eigenfunctions, and associated eigenvalues, of

equation (5.20). Of this spectrum, we are only interested here in the low-

est mass eigenstates. As mentioned previously, there is sufficient param-

eter freedom to allow m2
w < 0 while keeping m2

c > 0, which enables the

four-dimensional mode φw to act as the usual standard model Higgs, and

prevents φc from breaking the colour gauge group SU(3)C . An example of

the effective potentials WY (w), which support such eigenvalues, are given in

Figure 5.3. Note that if m2
w < 0, one really needs to solve for the background

configuration of η, χ and Φ simultaneously, to ensure that the back-reaction

of the tachyonic φw does not destroy the domain wall. Since the energy
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Figure 5.3: Example potential profiles WY (w), given by equation (5.21), which
trap the Higgs doublet Φw and coloured scalar Φc. The straight horizontal line is
WY = 0. Parameters are chosen such that the lowest eigenstate of W−1 (W2/3) has
a negative (positive) eigenvalue. This gives the four-dimensional Higgs doublet φw

a tachyonic mass on the brane while keeping the coloured scalar φc heavy.

scale of φw condensation is much lower than that of the other background

scalars, we assume the back-reaction to be negligible, and the domain wall

stable. Actually, due to the shape of the profile pw, the background config-

uration associated with φw is like a mini version of DS all over again: the

Φw component of Φ is breaking GSM → SU(3)C ⊗ U(1)EM, but only inside

the domain wall.

Recall that the scalar spectrum also contains the kink translation zero

mode, which is potentially frozen out in the thin kink limit, as discussed at

length in Section 3.1.3. If this mode does not freeze out, or if the kink is not

thin enough, then the translation mode must be dealt with in some other

way, possibly using gravity, following Shaposhnikov et al. [179].

As mentioned at the beginning of this chapter, gauge coupling constant

evolution cannot be examined until a proper phenomenological parame-

ter fitting is done, preferably with three generations. This is because the

higher mass modes both depend on these parameters and affect the cou-

pling constant evolution. Since the higher mass modes are split SU(5) mul-

tiplets, the running will be different from standard four-dimensional, non-

supersymmetric SU(5), and successful unification may, in fact, be possible.

Note that coupling constants run logarithmically, not through a power-law,

in the effective four-dimensional theory of localised fields.
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5.3.2 Effective Higgs sector and fermion masses

Having solved the Schrödinger-like equation (5.20) for the profile pw and

mass-squared eigenvalue m2
w, we are able to determine the effective four-

dimensional action for the ground-state Higgs mode φw. We consider only

those terms that contain φw alone; for example, we ignore the terms cou-

pling this Higgs to the gauge fields. From T we obtain the usual kinetic

term, diagonal and canonically normalised due to the orthonormality of the

eigenfunctions. The effective potential for φw comes entirely from Vrest; the

µ2
Φ and λ5–8 terms induce the trapping potential and conspire to produce a

value for m2
w, while the λ4 term yields a quartic interaction. The resulting

effective action is quite simply

Sφw
=

∫

d4x
[

∂αφ†w∂αφw −m2
wφ

†
wφw − κw(φ†wφw)2

]

, (5.22)

where the (dimensionless) quartic coupling constant is

κw = λ4

∫

(pw)4 dw . (5.23)

Note that pw is a real-valued profile. Since we have arranged for m2
w to be

negative, φw will pick up a VEV. More precisely, it is the lower component

of this Higgs doublet (the uncharged component) that picks up the VEV. It

is

〈φw〉 =

√

−m2
w

κw
. (5.24)

Now we would like to consider the fermions; their kinetic terms and their

mass terms. What follows is a bit of a notational nightmare because we begin

with five-dimensional, Dirac, SU(5) multiplets, Ψ5 and Ψ10, and end up with

four-dimensional, chiral spinors. For the following deconstruction, it may be

helpful to refer to equation (1.12) and Figure 1.1.

The five-dimensional multiplet Ψ5 contains the five-dimensional, Dirac,

anti-down quark Ψdc and the five-dimensional, Dirac lepton-doublet Ψl. The

latter is made up of the electron Ψe and the electron-neutrino Ψν, both of

which are still five-dimensional Dirac fields. These components are sepa-

rated into an extra-dimensional profile and a four-dimensional spinor. As

per previous discussions, the kink background localises a four-dimensional,

left-chiral projection of these spinors, and in this chapter we are only con-
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sidering this ground state. So, we define, Ψdc = fdcψdc , where fdc(w) is

the profile associated with the four-dimensional, left-handed field ψdc(xµ),

which is to be identified with the degrees of freedom of the anti-down quark

of the standard model. In the notation used in equation (5.15), we iden-

tify fdc ≡ f(n=5,Y=2/3). For the lepton-doublet field, both components of

the doublet have the same profile, so we can write Ψl = flψl, as well as

Ψe = flψe and Ψν = flψν . Here, fl ≡ f(n=5,Y=−1) is the profile, and ψl(x
µ) is

the four-dimensional, left-chiral lepton-doublet of the standard model, with

components ψe(x
µ) and ψν(x

µ). Just to be clear, we have ψl = (ψe, ψν).

The multiplet Ψ10 contains Ψuc = fucψuc , Ψec = fecψec and Ψq = fqψq,

with a factor of 1/
√

2, as per equation (1.12). The latter field is the quark-

doublet and contains Ψu = fqψu and Ψd = fqψd. The fields ψuc , ψec , ψu

and ψd are four-dimensional, left-chiral fields that are identified with the

anti-up quark, anti-electron, up quark and down quark respectively. These,

together with the left-chiral fields from Ψ5, make up precisely the fermion

content of the standard model.

Our next task is to extract the relevant terms from Y5 which give mass to

the four-dimensional fermions. We are interested in those terms which cou-

ple individual components of Ψ5 and Ψ10 to Φw, where the latter is defined

by Φ = (Φc,Φw). There are two such terms in the Ψ5-Ψ10-Φ coupling:

(Ψ5)cΨ10Φ ⊃ 1√
2

[

(Ψdc)cΨqΦw + ǫij(Ψl)ciΨec(Φw)j

]

, (5.25)

where ǫ12 = −ǫ21 = 1, and the i, j indices on the fields work, for example, as

(Ψl)1 = Ψe. Be careful with the superscript-c notation here: Ψc is the five-

dimensional charge conjugate of Ψ (defined earlier), but Ψdc is just notation

to remind us that this field is to be identified with an anti-down quark (we

could have called it Ψanti-d instead). The Ψ10-Ψ10-Φ coupling contains one

other relevant term:

ǫijklm(Ψ10)cij(Ψ10)kl(Φ
∗)m ⊃ 4ǫij(Ψuc)c(Ψq)i(Φ

∗
w)j . (5.26)

By using expansions of the form ΨX = fXψX (X labels some fermion)

and Φw = pwφw, and by making the replacement (φw)2 → 〈φw〉, we obtain,

from equations (5.25) and (5.26), bi-linear terms which couple each fermion

with their anti-fermion partner. For example, ψe is paired with ψec . These
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terms are exactly the requisite fermion mass terms. Each four-dimensional,

left-chiral spinor field will also have a kinetic term, which is canonically

normalised because the f2
X are normalised to unity.

Considering just those terms which serve to describe the massive, prop-

agating electron at the effective four-dimensional level, we obtain the action

Se =

∫

d4x
[

ψe iγ
α∂αψe + ψec iγα∂αψec + κe〈φw〉(ψe)cψec + h.c.

]

. (5.27)

Recall that both ψe and ψec are left-chiral fields. The charge conjugate in

equation (5.27) is now the usual four-dimensional charge conjugate: ψc =

γ2ψ∗. The coupling constant is computed as the overlap integral

κe =
ih−√

2

∫

fl fec pw dw , (5.28)

and the mass of the electron is identified as

me = |κe|〈φw〉 . (5.29)

For the sake of completeness, let us define the Dirac field e = ψe + (ψec)c

which has U(1)EM electric charge −1. The action (5.27) can then be written

in the more familiar form

Se =

∫

d4x [e iγα∂αe−meee] . (5.30)

The story is the same for the down and up quarks. The fields ψd and ψdc

form a Dirac pair, as do ψu and ψuc . Their effective actions are analogous

to equation (5.27), but with coupling constants

κd =
ih−√

2

∫

fdc fq pw dw , (5.31a)

κu = 4ih+

∫

fuc fq pw dw , (5.31b)

and corresponding masses

md = |κd|〈φw〉 , (5.32a)

mu = |κu|〈φw〉 . (5.32b)

For the single-generation standard model that we have reproduced here,
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it is obvious that there are enough parameters to fit the quark and lepton

masses. The profiles fl, fec , fdc , fq and pw can be adjusted to obtain the

correct ratio me/md, then h− can be chosen to fix the absolute value.2 The

parameter h+ independently controls mu. For the three-generation case, it is

plausible that sufficient parameter freedom exists, though this has not been

rigorously proven as yet. It is a complicated problem, because the physical

observables depend on profile functions which depend in complicated ways

on the Lagrangian parameters. There may also be diagonalisation issues in

the profile sector, as the Schrödinger-like equations will contain terms which

mix the three generations (hnη and hnχ will be 3× 3 matrices). Corrections

to the classical calculations due to the effect of the non-perturbative bulk

will also exist at some level.

5.3.3 Including gravity

The previous analysis has been performed in the absence of gravity. To

include gravity, using the ansatz for the metric given by equation (5.10), we

must find a background configuration for σ, η and χ1 that satisfies Einstein’s

equations and the Klein-Gordon equations. As in the gravity-free case,

analytic solutions exist for a restricted set of parameters. For notational

convenience, define a = v2/6M3
∗ . Then, for the special parameter choices

λ1 = 0 , (5.33a)

c = 2l +
λ̃

2
, (5.33b)

µ2
χ =

lv2

1 + 2a
+
λ̃v2

4

(

3 + 8a

1 + 2a

)

, (5.33c)

we are able to obtain the convenient analytical solutions

η(w) = v tanh(kw) , (5.34a)

χ1(w) = v cosh−1(kw) , (5.34b)

σ(w) = a log [cosh(kw)] , (5.34c)

2There may be other physics, like proton decay, that dictate the layout of some of
the profiles. There should be enough freedom in all of the parameters to satisfy these
constraints and the mass constraint.
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where

k2 =
cv2 − µ2

χ

1 + 4a
, (5.35)

and the fine-tuned cosmological constant is Λ = −6a2k2. Recall that we

have defined λ̃ ≡ λ2 + 7
30λ3.

Our metric solution is a smoothed out version of the Randall-Sundrum

warped metric, and the linearised graviton fluctuation equation has a con-

fined zero-mode that is identified as the usual graviton, as discussed in detail

in Section 4.1. Thus, our SU(5) model contains an effective description of

four-dimensional gravity trapped to the dynamically generated brane.

In the presence of gravity, the four-dimensional fermion spectrum still

contains a localised zero mode for each species. However, the trapping

potentials of the Ψ5 and Ψ10 fields are now driven towards zero far from the

brane, since the physics there is dominated by the warp factor. The fermion

trapping potentials are thus volcano-like, and, in analogy with the graviton

modes, arbitrarily light fermions plague the original spectra. This effect is

discussed in detail in Chapter 4, and it is shown there that such continuum

fermion modes interact only very weakly with brane-localised processes. The

Φ spectrum similarly contains a localised standard-model Higgs doublet plus

a continuum starting at zero mass. Because the eigenvalue of the Higgs

doublet (the mass squared) is negative, it still retains a mass gap to the

beginning of the continuum modes.

The analysis of the induced continuum modes is affected by the DS

phenomenon because the fermions and scalar transform non-trivially under

SU(5). Since the continuum modes penetrate into the bulk, they feel the full

effects of the confinement-phase physics we assume holds there. We there-

fore expect the low-mass continuum modes to manifest physically as the

constituents of massive “hadrons” in the bulk, as opposed to a single con-

tinuum mode associated with, say, ψe. But these low-mass hadrons still have

to tunnel through the volcano-like potential barriers to get inside the domain

wall and interact with the matter localised there. Since the non-perturbative

effects switch off near the wall, the situation discussed in Chapter 4 is re-

gained and, with some plausibility, we reach the same conclusions regarding

suppression of brane-bulk mode interaction.

In summary, we are confident that the analysis of our SU(5) model per-

formed in the gravity-free case in Section 5.3.1 and Section 5.3.2 remains
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valid when gravity is switched on. The ground state modes of Ψ5, Ψ10 and

Φ remain the same, as do the forms of their effective actions. The overlap

integrals will now include factors with various powers of the warp factor

e−2σ, but such a modification has little qualitative effect, and we still re-

tain enough freedom in our choice of parameters to fit, for example, the

fermion masses. The four-dimensional, low-energy effective action therefore

describes the single-generation standard model in a Minkowski background,

with minimal coupling to four-dimensional gravity.

5.4 Relationships among the scales

Having described the construction of the model, it is now worth surveying

the various scales it contains and how they should relate to each other. Of

the many scales in the model, four need careful consideration:

• the ultraviolet cutoff ΛUV,

• the SU(5) breaking scale on the brane, ΛSU(5) ∼ [χ1(w = 0)]2/3,

• the bulk SU(5) confinement scale Λconf, and

• the domain-wall inverse width ΛDW ≡ k.

All of these scales must be well above the electroweak scale. Within the

four, the required hierarchy is

ΛUV > ΛSU(5) > Λconf > ΛDW . (5.36)

For obvious reasons, the UV cut-off must be the highest scale in the the-

ory. The SU(5) breaking scale on the brane must be higher than the SU(5)

bulk confinement scale, because we need to suppress the SU(5) confinement

dynamics on the brane. If the opposite were the case, then the dynamics of

the field χ would be everywhere dominated by the strong SU(5) interactions,

and our classical background scalar field configuration would have no phys-

ical relevance. Finally, the SU(5) bulk glueball radius scale must be smaller

than the width of the domain wall in order for the DS effect to work, as

discussed in the lattice gauge analysis of Laine et al. [219]. This translates

into the confinement scale being higher than the inverse wall width.
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The UV, domain-wall-width and SU(5) breaking scales are governed by

free parameters, so the required hierarchy amongst those three can always

be achieved. The SU(5) confinement scale is in principle to be calculated

from the bulk SU(5) gauge theory. Because we are in five-dimensions, this

gauge theory has a UV cutoff, and so Λconf will depend on ΛUV, as well as

the dimensionful gauge coupling constant g5. If the qualitative behaviour

of the pure Yang-Mills theory discussed in Section 5.1 also holds for the

complete theory, then we expect there to be a critical coupling gc(ΛUV)

above which the theory is confining. The hypothetical lattice gauge theory

calculation would have to allow values of g5 > gc to furnish a Λconf that

obeyed equation (5.36). This calculation is left as work for the future.

5.5 Conclusion

We have proposed in this chapter a domain-wall brane model of an in-

finite extra-dimension, which respects SU(5) gauge symmetry and repro-

duces, at the low-energy, four-dimensional level, the single-generation stan-

dard model, or something very close to it, and general relativity. Our model

draws on the techniques developed in earlier chapters for realising a dynam-

ically generated domain-wall brane, and for dynamically localising gravity,

fermions and scalars. The background configuration is formed by the scalars

η and χ, along with the Randall-Sundrum warped metric solution. The five-

dimensional fermion multiplets Ψ5 and Ψ10 propagate in this background,

and left-chiral zero modes are projected out and appear in the effective four-

dimensional action. The five-dimensional Higgs Φ plays the similar role of

providing a four-dimensional electroweak Higgs doublet. Gauge boson lo-

calisation is postulated by way of the Dvali-Shifman mechanism, and we

discussed in Section 5.1 why we believe this mechanism to be necessary,

and, a reasonably promising solution provided five-dimensional Yang-Mills

exhibits confinement. In essence, what we have shown is that it is quite

straightforward to construct a domain-wall-localised standard model if con-

finement exists for an SU(5) gauge theory bulk.

In Section 5.2 we presented the model: the field content, the symme-

tries, the action and the boundary conditions which lead to the requisite

domain-wall background. Section 5.3 discussed aspects of the model, utilis-

ing a specific analytic background solution. In particular, we derived expres-
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sions for the profiles of the localised, zero mode fermions (in the gravity-free

case), and demonstrated how to obtain a tachyonic Higgs doublet, while

keeping the coloured-Higgs massive. The effective electroweak sector was

determined, as were the masses me, md and mu. We noted that the usual

tree-level SU(5) relation md = me is automatically absent in our model,

and that coloured-Higgs-induced proton decay can be suppressed via the

splitting of the extra-dimensional profiles. We also gave analytic solutions

for the background in the case where gravity took the form of a smoothed

out version of the Randall-Sundrum warped metric. It was argued that the

qualitative, low-energy features of our model remain intact in the presence

of gravity. The relationships between the various scales of the model were

outlined in Section 5.4.

There are a number of open problems to be addressed within the model-

building framework exemplified in this chapter. The extension to three gen-

erations of fermions should be relatively straightforward, along with non-zero

neutrino masses. More difficult would be the exercise of fitting the parame-

ters of the model to experimental data, including CKM and PMNS mixing.

One would also need to determine if, after doing such a fit, there remains

enough parameter freedom to obey the experimental bounds on proton de-

cay. Following this, a study could proceed to determine how the effective

four-dimensional GSM gauge coupling constants unify into a five-dimensional

SU(5) gauge coupling constant. The phenomenological implications of the

gauge bosons that are massive inside the domain wall must also be under-

stood, especially for the physics of proton decay. The kink translation zero

mode requires a more rigorous treatment in the case with gravity turned on.

Most importantly, one needs to confirm the veracity of the DS mecha-

nism in five-dimensions. If DS works, then a whole world of domain-wall

brane model building is opened up, of which the SU(5) model presented in

this chapter is but an example. If DS does not work, then it is not at all

clear that realistic field-theoretic domain-wall brane models exist when the

extra dimension is infinite in extent. This is really the crux of the current

thesis: we are confident that the mechanisms for gravity, fermion and scalar

localisation are robust, but that for gauge boson localisation still remains

an open question. We have put forward the DS mechanism as the most

promising candidate to resolve this question, and we hope that our efforts

lead to renewed interest in the issue of confinement in higher-dimensional
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gauge theories.

An extension of the work presented in this chapter, more along the

model-building line than the phenomenological one, is the enlarging of the

gauge symmetry of the action. In Chapter 6 we consider E6 grand unifi-

cation, and demonstrate that it is possible to reduce the pair of fields η

and χ to a single scalar, which plays the dual role of kink formation and

Dvali-Shifman symmetry breaking, and implements the clash-of-symmetries

mechanism.



Chapter 6

E6 invariance and

the clash of symmetries

Among the many possible extensions of the SU(5) domain-wall model

constructed in Chapter 5, we are inspired initially to explore the

potential of a larger gauge group. Given that the Dvali-Shifman (DS)

mechanism works in five-dimensions and offers a whole new world of extra-

dimensional model building, we find ourselves with the urge to see just how

vast this new world is. We would like to test if the minimal, and seemingly

very natural, choice of SU(5) is truly the best way to proceed, as we may

be able to extract more model-building-power by considering larger gauge

groups in the context of extra-dimensions, domain-walls and the DS mecha-

nism. When constructing a model, the choice of symmetries — in particular

the gauge invariance of the action — is perhaps the most important deci-

sion, as they dictate not only the allowed structure of terms in the action,

but also determine the physical processes of the quantum field theory. It

therefore seems that we are justified in spending more of our time exploring

the core choices underlying our construction, as opposed to concentrating

on phenomenological studies. Such explorations aim to enhance, and ulti-

mately simplify, our domain-wall brane model of an infinite extra-dimension,

which may end up being a viable description of physics beyond the standard

model.

These musings provide the motivation for this chapter, in which we con-

sider extensions of SU(5) to both the groups SO(10) and E6. It turns out

that the latter finds the more natural application in the context of a do-

169
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main wall which incorporates DS, and we sketch the basic structure of such

an E6 model, including the configuration of the kink and the layout of the

fermion profiles. In addition to drawing on the techniques and mechanisms

of previous chapters, the ideas in the current chapter rely on quite a bit of

non-trivial group theory, and we shall spend some time reviewing and de-

veloping the necessary background. The DS mechanism plays a significant

role in the dynamics of our construction, and does so in conjunction with

the clash of symmetries.

The clash-of-symmetries (CoS) mechanism [39, 199, 202, 200, 203, 204,

205] was first discussed in Chapter 2, and is crucial to the formation of the

domain-wall branes studied in this chapter. In this context, the CoS phe-

nomenon automatically arises when the simple Z2 kink (for example, η in

Chapter 5) is extended to a theory with a continuous internal symmetry

group G in addition to the discrete symmetry. Upgrading the scalar-field

associated with the kink to a non-trivial representation of G, the domain-

wall configuration induces a disconnected vacuum manifold topology due to

the broken discrete symmetry. In addition, the kink spontaneously breaks

G to a subgroup H. Two classes of domain-wall solutions exist: those which

respect the same H at all values of the bulk coordinate w, and those where

the unbroken subgroup varies in the bulk. We shall call the first class “non-

CoS domain walls”, contrasted with the “CoS domain walls” of the second

class. The latter domain wall configurations arise when the subgroups re-

spected asymptotically (at w = ±∞) are isomorphic but differently embed-

ded subgroups, H and H ′. The symmetry group at finite w is typically the

intersection H ∩H ′, which is of course smaller than both H and H ′.

Take note of this last observation: we have a smaller symmetry in the

non-asymptotic region, the region around the centre of the domain wall,

than we do in the bulk. This is almost exactly the set-up required to im-

plement the DS mechanism!1 It is not exactly the original DS idea, and the

difference is subtle, but extremely important. In DS, the bulk symmetries

on either side of the domain wall are equivalent, not just isomorphic, and

the smaller symmetry group which is “sandwiched” between these bulk sym-

metries is induced by a scalar field in a non-trivial representation, with a

profile engineered for the sole task of breaking the symmetry at the required

location. Furthermore, as exemplified by the SU(5) model of Chapter 5, the

1See Section 1.3.3 and Section 5.1 for detailed discussions of the DS mechanism.
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symmetry that is asymptotically restored in the bulk in the DS set-up is the

symmetry of the action. This contrasts the clash-of-symmetries scenario,

where the bulk symmetries H and H ′ are subgroups of G, the latter being

the full symmetry of the action.

The fact that the full symmetry G is asymptotically restored is clearly

not a necessary condition for gauge boson localisation. In the CoS situation,

the symmetry H ∩H ′, which is respected in the vicinity of the brane, is a

subgroup of both H and H ′. By the DS reasoning, provided H and H ′

contain confining, non-Abelian factors, at least some of the gauge bosons of

H ∩ H ′ will be localised, and so the CoS mechanism will generically, and

automatically, give rise to DS-like gauge-boson localisation. This alterna-

tive realisation of the DS mechanism seems conceptually neater and more

advanced than the original, because it can be achieved using scalars in a

single irreducible representation of G. The original requires two multiplets:

a G-singlet to form a kink, which in turn forces a G-multiplet to condense

in the core of the wall.

We shall show in the sections that follow that the CoS-DS confluence

discussed above can naturally produce an SU(5) effective theory on the

brane. The action of this theory is invariant under local G = E6 trans-

formations, and, in addition to the five-dimensional gauge fields, contains

a scalar field in the adjoint representation, the 78, and a five-dimensional

fermion in the 27. The CoS mechanism is implemented by breaking G, us-

ing the scalar, to H = SO(10) ⊗ U(1)E on one side of the domain wall, and

to H ′ = SO(10)′ ⊗ U(1)E′ on the other side. The intersection of these two

asymptotic bulk symmetries is SU(5)⊗U(1)⊗U(1), where the SU(5) here is

the common subgroup of SO(10) and SO(10)′. Assuming that DS works in

five-dimensions, and taking the SO(10)’s as confining in the bulk, the gauge

bosons associated with SU(5) are localised to the domain wall. By Yukawa

coupling the fermion field to the scalar, we can localise four-dimensional,

left-chiral zero modes as usual. Due to the group-theoretic structure of this

coupling, out of the twenty-seven Dirac components, only seventeen are lo-

calised, and together they transform as a 5∗ ⊕ 10 ⊕ 1 ⊕ 1 of the localised

SU(5). This is a remarkable feature of our model, as such a spectrum of

fermions zero-modes contains just what we need to emulate the standard

model, with very little “excess baggage”.

Before we delve into the details of the E6 model, we shall first review the
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clash-of-symmetries idea in Section 6.1. This is followed, in Section 6.2, with

a discussion of SO(10) domain walls, featuring both the CoS and DS mech-

anisms, and we explain here why the further extension to E6 is necessary.

In Section 6.3 we provide an in-depth analysis of the invariants of E6 and

the structure of the global minima that break this group to SO(10) ⊗U(1).

A preliminary version of the E6 model is then presented in Section 6.4,

and we give plots of the domain-wall background configuration and fermion

localisation profiles. Conclusions are drawn in Section 6.5.

6.1 The clash of symmetries

Symmetries play a huge role in models of our universe, and understand-

ing how such symmetries can be broken is of fundamental importance to

a physicist. The standard Higgs mechanism, where a doublet scalar field

breaks SU(2)L ⊗ U(1)Y → U(1)EM, has the Higgs field assuming a con-

stant background configuration. In the clash-of-symmetries scenario, the

background scalar field is spatially-varying and can break a symmetry to

a smaller subgroup than is accessible by the constant configuration of the

same field. Since the physics we observe seems quite homogeneous and

isotropic, such hypothetical, spatially-dependent symmetry breaking finds a

much more natural home in the context of extra dimensions. Here, then, we

might hope to construct models with large symmetries, and appeal to such

mechanisms as the clash-of-symmetries to provide us with “large” symmetry

breaking power. The technical details of the CoS mechanism draw on some

interesting group theory, and we review such matters in this section.

At the heart of the clash-of-symmetries mechanism is the fact that, for

a group G and a subgroup H ∈ G, it is generally possible to embed H in G

in a number of different ways. Let us consider a concrete example: let G be

the dihedral group D3 defined by

D3 = 〈x, y | x2 = e, y3 = e, (xy)2 = e〉 , (6.1a)

= {e, x, y, y2, xy, xy2} , (6.1b)

where e is the identity element. First consider the subgroup H = {e, x},
which is isomorphic to Z2, and compute its set of left cosets defined by

G/H ≡ {gH : g ∈ G}. We are using the notation whereby gH ≡ {gh : h ∈
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H} for some g ∈ G. The coset set is

G/H = {H, yH, y2H} . (6.2)

Note that H is not a normal subgroup of G and so the set of cosets G/H

does not form a group with respect to the multiplication operator from G.

Nevertheless, we can act on a particular element of G/H with some element

g ∈ G, the result of which will be some, in general different, element of

G/H. For example, x ∈ G acting on yH ∈ G/H (by pre-multiplication)

yields y2H ∈ G/H, while x acting on H yields H. As exemplified by the

latter example, an interesting question is the following: what set of elements

of G act on a given element of G/H to yield that same element of G/H back

again? In other words, what are the symmetries of the elements of G/H?

For our example, the subgroup H ⊂ G is the symmetry of the element

H ∈ G/H, yHy2 = {1, xy} is the symmetry of the element yH, and y2Hy =

{1, xy2} is the symmetry of the element y2H. These three groups, namelyH,

yHy2 and y2Hy, are all isomorphic to each other (they are all isomorphic toZ2), they are all subgroups of G, but they are differently embedded within

G. We have thus found the three distinct embeddings of Z2 within D3.

Similarly, one can take H ′ = {1, y, y2} to find G/H ′ = {H ′, xH ′} whose

two elements respect the symmetries H ′ and xH ′x = {1, y2, y} respectively,

showing that D3 contains two copies of Z3. This idea of multiple embeddings

is a recurrent idea of this chapter.

Moving on from the pure mathematics of groups and embeddings, we

want to see how such ideas apply in the context of the internal symmetries

of an action. To this end, consider a theory whose symmetry group is

the direct product of a continuous symmetry G and a discrete symmetry

Z. It is important for us that Z is not a subgroup of G. In this generic

theory we need there to be a scalar, call it χ, which transforms non-trivially

under G and Z, and which has a potential, referred to in what follows as

the Higgs potential. Of course, this Higgs potential will remain invariant

when G and/or Z acts on the associated scalar field χ. Suppose the global

minima of the potential spontaneously break G to some subgroup H, and

simultaneously break Z to a smaller discrete group Z ′. This means that

the ground state configuration — the vacuum — for χ respects only the

restricted symmetries H and Z ′. Acting on this vacuum with elements from
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H or Z ′ leaves the vacuum expectation value (VEV) of χ unchanged, but

acting with an element from G or Z will, in general, transform the VEV to

a different, but degenerate, form. This motivates us to consider the set of

degenerate vacua that are related by G⊗ Z transformations:

W = {|0〉, g|0〉, z|0〉, gz|0〉, . . .} . (6.3)

Here, |0〉 is the vacuum state corresponding to the VEV of χ which is invari-

ant when χ is acted upon by elements from the subgroup H⊗Z ′. The other

vacuum states in W are obtained by acting on χ — denoted notationally as

acting on |0〉 — with elements from G ⊗ Z which are outside H ⊗ Z ′, that

is (g, z) ∈ G ⊗ Z but (g, z) 6∈ G ⊗ Z. These vacuum states are degenerate

in energy with |0〉, but have χ assuming a different VEV. There is a direct

correspondence between the set W and the coset space (G/H)⊗ (Z/Z ′): |0〉
plays the role of the identity element H ⊗ Z ′, and the vacuum states gz|0〉
mimic the left cosets; compare W with equation (6.2).

At this point, it may be helpful to keep in mind two examples. First,

consider the canonical kink, where χ is a real singlet, and the potential is

a quartic potential. There are no continuous symmetries, only a discrete

symmetry Z = Z2 which acts as χ → −χ. The quartic potential breaks Z

to the trivial group (which contains the single identity-element e), so the

coset space is Z2/{e} = Z2, and there are two vacua. If the potential is

defined by equation (1.16), then these two vacua are χ = v and χ = −v,
so W = {v,−v}. Note that these vacua are related precisely by the action

of Z2. Second, we can upgrade this picture to a continuous symmetry by

taking χ to be complex, G = U(1) and Z the trivial group. The associated

potential breaks G to {e}, the coset space is thus U(1)/{e} = U(1), and

there is now a continuum of U(1)-related vacua: W = {veiα : α ∈ R}.
For the sake of definiteness, we take Z = Z2 = {e, z : z2 = e} in the

following exposition, with the Z2 completely broken, so the coset space of

the discrete symmetry sector is Z2, and the total coset space is (G/H)⊗Z2.

Because of this broken discrete symmetry, the vacuum manifold W consists

of two disconnected copies related by the broken element z ∈ Z2. This

generalises the simple Z2 kink situation outlined above, where the vacuum

manifold consisted of the two disconnected points v and −v related by Z2.

Each such point is now expanded into a non-trivial manifold whose “size”
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is related to the “size” of G/H. We shall label these disconnected sets of

vacua as V and Vz such that W = V ∪ Vz and V ∩ Vz is the empty set. TheZ2 must not be a subgroup of G for these two pieces to exist.

Let us make it clear what we mean by the vacuum manifold V. It is a set

of degenerate vacuum states corresponding to different VEVs for χ, related

by elements of G:

V = {g|0〉 : g ∈ G} . (6.4)

Of course, |0〉 is invariant under the subgroupH, so if g ∈ H in equation (6.4)

then we do not move to a different vacuum. Our notation for an element

of V shall be |0; g〉 ≡ g|0〉. As for the other piece of the vacuum manifold,

Vz, we cannot get to any of its vacua acting with elements of G because we

required the discrete group Z2 to live outside G. This other piece is thus

generated by acting with the discrete transform z ∈ Z2 to get

Vz = {gz|0〉 : g ∈ G} . (6.5)

The vacuum |0〉z ≡ z|0〉 is the Z2 image of |0〉, and the full manifold of Vz
is generated by applying z to |0; g〉 for all g, or, equivalently, because the

continuous and discrete symmetries commute, applying all g to |0〉z . Note

that the Higgs potential is G- and Z-invariant, so all elements of V and Vz
are degenerate in energy. The two large circles in Figure 6.1 schematically

represent the two disconnected vacuum manifolds, and the black solid dots

represent particular vacua.

By construction, the symmetry of the vacuum |0〉 is H. But what about

the other states |0; g〉? The answer is that for a given g ∈ G, the vacuum

|0; g〉 is symmetric under the subgroup gHg−1. This is easy to verify:

gHg−1|0; g〉 = (gHg−1)g|0〉 = gH|0〉 = g|0〉 = |0; g〉 . (6.6)

The subgroup Hg = gHg−1 is isomorphic to H, but if H is not a normal

subgroup (which is the case if G is a simple Lie group) then H and Hg are

comprised of different elements of the parent group G. We therefore obtain

the result that the degenerate vacua |0〉 and |0; g〉 respect differently embed-

ded but otherwise isomorphic subgroups, given by H and Hg respectively. As

for elements of Vz, their corresponding symmetries follow easily because the

groups G and Z commute. When we apply H to |0〉z = z|0〉 the elements of

H go straight through z to act on |0〉, leaving it invariant. Similarly, Hg is
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the symmetry of the vacuum |0; g〉z .
These results are in direct analogy with our previous D3 example, where

the elements of the coset set D3/Z2 were invariant under three differently

embedded versions of Z2. For the case of a discrete, finite group, the num-

ber of embeddings of H is equal to the number of elements in the coset

G/H. For a continuous G there is an uncountable infinity of vacua |0; g〉,
corresponding to all the possible g, so there exists an uncountable infinity

of differently-embedded but isomorphic subgroups Hg. However, we can im-

pose a restriction such that the number of embeddings is actually finite. Let

the Cartan subalgebra GC of G be a certain particular set of generators, cor-

responding to a particular choice of basis for the Lie algebra. If we require

that the Cartan subalgebras of two subgroups Hg1 and Hg2 are both sub-

spaces of GC , then the number of distinct embeddings is finite. A familiar

example of this concerns the SU(2) subgroups of SU(3). While there are an

uncountable infinity of ways of embedding SU(2) in SU(3), there are only

three embeddings that have the SU(2) Cartan subalgebras as subspaces of

the given Cartan-subalgebra space of SU(3). These are usually called I-spin,

U-spin and V-spin. When we refer to “different embeddings” later on in the

chapter, this is what we shall mean.2

We have now established the structure of the vacuum manifold V ∪ Vz,
and the basic symmetry properties of the individual vacua. It is probably

obvious that we are going to construct domain-wall configurations that in-

terpolate between various vacuum states. For a kink-like profile in an infinite

extra-dimension w, we need to pick two vacua, one for the scalar field to

asymptotically approach as w → −∞, and the other for w → +∞. If the

chosen vacua are either both from V, or both from Vz, then the “domain

wall” configurations are not topologically stable: they are in the same topo-

logical class as any of the spatially-homogeneous vacua |0; g〉, or respectively

|0; g〉z , and will dynamically decay to one of these vacuum configurations.

They may be metastable, depending on the Higgs potential topography, so

while they are of some interest we shall not consider them further here.

2Note that taking linear combinations of Cartan generators to define different embed-
dings is in accord with Dynkin’s general theory of embeddings [221]. In that formalism,
the embedding of an algebra H into a simple or semi-simple algebra G is fully defined by
a mapping F from the Cartan subalgebra of H into the Cartan subalgebra of G, as per
Hα → F (Hα) =

Pn

a=1 FαaGa, where Hα (α = 1, 2, . . . ,m) and Ga (a = 1, 2, . . . , n) are
the Cartan generators of H and G, respectively. The matrix (Fαa) is the defining matrix
of the embedding, and two embeddings are different if their defining matrices are different.
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|0〉

|0; g〉

|0〉z
|0; g1〉z

|0; g2〉z

V Vz
Figure 6.1: The vacuum manifold of a G ⊗ Z2 → H model and some typical
choices for domain-wall configurations. The two circles schematically depict the
disconnected vacuum manifolds V and Vz corresponding to the coset space (G/H)⊗Z2. Each point along the left V circle corresponds to a vacuum |0; g〉 for some
g ∈ G, with the corresponding situation for Vz shown with the right circle. The
three broken lines represent possible domain-wall configurations, with the endpoints
at w = ±∞ on various choices of vacua. The dotted line represents a possible
non-topological domain-wall configuration. The dashed line represents a non-CoS
domain wall, while the two dash-dotted lines are CoS domain walls.

Topologically non-trivial domain-wall configurations have one boundary

condition from V and the other from Vz. Because of the continuous symme-

try G, there is an uncountable infinity of such choices, and thus potentially

an uncountable infinity of domain-wall solutions, all within the same non-

trivial topological class. This potential richness has no analogue for the

simple Z2 kink. Figure 6.1 illustrates some of the possible domain-wall con-

figurations.

In the case of a topologically non-trivial configuration, suppose that the

boundary condition at w = −∞ is |0〉 and at w = +∞ it is |0〉z . As we

have already established, both of these vacua respect the same symmetry

H. A domain-wall configuration that interpolates between these vacua is

then expected to respect the same subgroup H at all w. This is an example

of a non-CoS domain wall, and it is shown in Figure 6.1. Clearly, taking the

vacua as any pair |0; g〉 and |0; g〉z produces a similar outcome; the resulting

configuration is nothing more than the g transform of the original one. A

non-CoS domain wall is the simplest possible generalisation of a Z2 kink for

a G-invariant theory.

There is, however, a more interesting way to configure a topologically

non-trivial domain wall: choose the vacuum to be |0〉 at w = −∞ and for

w = +∞ take it to be |0; g〉z for some g 6= e. In such a set-up, the Higgs po-

tential breaks G asymptotically to the differently-embedded but isomorphic
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subgroups H and Hg, respectively at −∞ and +∞, and this defines a CoS-

style domain wall [39, 199, 200, 202].3 At finite w, the configuration would

be expected to respect the smaller group H ∩Hg due to the fact that the

solution has to “reconcile” boundary conditions that have different stability

groups that “clash”.4

Now let us make some remarks about the energy-densities of the domain

walls that we have identified. For the non-CoS domain walls, there are an

infinite family of configurations, trivially related to each other by global

transformations g ∈ G. They all have the same energy density, because the

Hamiltonian is invariant under G. The domain walls that implement the

clash-of-symmetries have a more complicated spectrum. Consider two con-

figurations, χ1(w) and χ2(w), with χ1 interpolating between |0〉 and |0; g1〉z,
while χ2 interpolates between |0〉 and |0; g2〉z, such that g1 6= g2. For the

moment, suppose that G is a global but not a local symmetry. These two so-

lutions cannot be transformed into each other by a global G-transformation

because they share the same vacuum |0〉 at, say, w = −∞, but different vacua

at w = +∞. Their configurations therefore trace different paths through

the Higgs potential topography, and they would be expected to have differ-

ent energy densities. As a corollary, the non-CoS solutions should have a

different energy density from the CoS solutions (put g1 = e and re-run the

previous argument).

All the solutions that interpolate between vacua from V to Vz are in the

same topological class, so finite-energy dynamical evolution between them

is allowed. Hence, the special configurations within that topological class

that minimise the energy density will be topologically stable. The others

should be unstable to decay to the minimum-energy configurations, which

play the role of “vacua” for the “kink-sector”. This general reasoning cannot

tell you which configuration has the minimum energy-density: this must be

calculated within a specific model. For example, in the toy model considered

by Davidson et al. [39] the sign of a Higgs potential parameter determined

whether the non-CoS or a CoS solution was energetically favoured.

3See also Pogosian and Vachaspati [203, 204, 205] for related works, and Dvali and
Shifman [222] for soliton-induced supersymmetry breaking.

4The usual outcome has H∩Hg as the symmetry respected at non-asymptotic values of
w, although the specifics depend on the scenario in question. Sometimes there is enhanced
symmetry at w = 0 because some of the scalar multiplet components instantaneously
vanish there; see [200, 201].
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Suppose now that G is a gauge symmetry, and specify that, at the level

of the solutions, the gauge fields AM vanish. The non-CoS configurations

remain connected through global transformations, and thus still have the

same energy-densities. Unlike the case where G was a global symmetry,

two CoS scalar field configurations, χ1 and χ2, can now be written as local

G-transforms of each other. Suppose that

χ2(w) = U(w)χ1(w) , (6.7)

where U(w) is an element of the local symmetry group G. Then the original

first solution

χ = χ1(w) , AM = 0 (6.8)

is gauge-equivalent to

χ = χ2(w) , AM = − 1

g∗
(∂MU)U † , (6.9)

where g∗ is the gauge coupling constant, but it is not gauge-equivalent to

χ = χ2(w) , AM = 0 , (6.10)

which is the original second solution. Thus the two solutions given by equa-

tions (6.8) and (6.10) have different energy densities, even though the scalar-

field portions are related by a local symmetry transformation. Although

AM = − 1
g∗

(∂MU)U † is a pure-gauge configuration, it contributes to the

energy density through the χ-AM interaction terms.

Setting the gauge fields to zero at the solution-level is basically a con-

venient choice of gauge, one we shall adopt for the rest of this chapter. Of

course the solutions can be made to look very different by gauge-transforming

them, but their physical consequences cannot change. This circumstance is

no different from the monopole or local-string cases, where the solutions

look different in different gauges. Actually, it is no more complicated than

the usual homogeneous VEV case. If 〈χ〉 is such a homogeneous VEV, then

it can be gauge-transformed to a non-homogeneous configuration U(x)〈χ〉
but the scalar gradient energy is cancelled by the gauge-field contribution.5

5It has not been proven that the minimum-energy domain-wall configuration must have
a gauge-field sector that is gauge-equivalent to zero, which appears to be a loose end. We
are making the assumption that it is in fact true for the purposes of this chapter.
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6.2 Attempt at an SO(10) model

With the clash-of-symmetries mechanism now a cogent part of our model-

building toolkit, we want to look at extending the SU(5) model of Chapter 5

to, in the first instance, an SO(10) invariant theory. In fact, our construction

is not going to work correctly, due to the non-confinement of some of the

gauge bosons of the standard model. Nevertheless, it gives us a chance to

introduce a working implementation of the clash-of-symmetries, combined

with Dvali-Shifman gauge boson localisation, in a more straightforward con-

text than the E6 set-up.

Actually, most of the work has already been done constructing the req-

uisite SO(10) model: Shin and Volkas [200] analysed O(10) kinks, and we

shall borrow liberally from their construction. The main thing we need to

do is reinterpret their kink configurations in the context of DS, in order to

determine which gauge bosons are localised to the domain-wall region. We

shall first recapitulate the model of Shin and Volkas (refer to their original

work for more details), and then discuss the DS features.

Let χ(xM ) be a scalar multiplet in the adjoint representation, the 45, of

SO(10). The most general quartic Higgs potential for such a scalar field is

V =
1

2
µ2 Tr(χ2) +

1

4
λ1 Tr(χ2)2 +

1

4
λ2 Tr(χ4) , (6.11)

where χ(xM ) = fα(x
M )X̂α with the X̂ ’s being matrix representations of the

generators in the fundamental of SO(10) while the fα’s are the components

of the adjoint multiplet. The matrix χ is antisymmetric and transforms as

per χ → AχAT where A is an SO(10) fundamental-representation matrix.

The parameter µ2 is chosen to be positive since Tr(χ2) is negative definite.

The cubic invariant Tr(χ3) identically vanishes so there is an accidental

discrete Z2 symmetry, χ→ −χ, which shall play the role of Z in the clash-

of-symmetries. It is not a subgroup of O(10).

The global minimisation of such a potential was performed by Li [223],

and see also Kaymakcalan et al. [224]. Using an SO(10) transformation, one

may always bring a VEV pattern into the standard form

χ = diag(f1 ǫ, f2 ǫ, f3 ǫ, f4 ǫ, f5 ǫ) , (6.12)

where the fi(x
M ) are real fields and ǫ ≡ i σ2 =

(

0 1
−1 0

)

. The five independent
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fields fi correspond to the five generators in the SO(10) Cartan subalgebra.

In this basis, the Higgs potential (6.11) becomes

V = −µ2
5
∑

i=1

f2
i + λ1

(

5
∑

i=1

f2
i

)2

+
1

2
λ2

5
∑

i=1

f4
i . (6.13)

For λ2 > 0, the global minima of V are attained when f2
i = f2

min for all i,

where

f2
min ≡ µ2

10λ1 + λ2
, (6.14)

and the corresponding unbroken subgroup of SO(10) is H = U(5). The

values of fi at the minima are specified up to a sign that can be chosen

independently for each component: fi = ±fmin. Different choices for these

signs correspond to two features: different embeddings of U(5) in SO(10)

and also a choice of which Z2 sector the minimum lies in.

To explore the effect of these sign choices further, let us have a look

at the structure of the possible domain-wall configurations in the model.

Suppose that at w = −∞, we choose the boundary condition

χ(−∞) = −f (5)
min ≡ −fmin diag(ǫ, ǫ, ǫ, ǫ, ǫ) . (6.15)

This defines a certain U(5) unbroken at w = −∞, and the VEV lies in one of

the two disconnected pieces of the vacuum manifold. At w = +∞, we have a

choice of three vacua that give rise to physically distinct scenarios, and they

are to be selected from the second vacuum manifold which is disconnected

from the first by the spontaneously broken Z2:

χ(+∞) =



















f
(5)
min ≡ fmin diag(ǫ, ǫ, ǫ, ǫ, ǫ)

f
(3,2)
min ≡ fmin diag(ǫ, ǫ, ǫ, −ǫ, −ǫ)

f
(4,1)
min ≡ fmin diag(ǫ, −ǫ, −ǫ, −ǫ, −ǫ)

. (6.16)

Permutations of the minus signs in the last two of these vacua are just

a trivial rearrangement of the representation-space and need not be sepa-

rately considered. Also, vacua with an odd number of minus signs on the

right-hand side of equation (6.16) are continuously connected to χ(−∞) by

SO(10); they give rise to non-topological domain walls, like the dotted line

in Figure 6.1, and shall not be considered here.
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The three vacua in equation (6.16) are invariant under differently em-

bedded subgroups of SO(10): U(5)1, U(5)2 and U(5)3. The superscripts (5),

(3, 2) and (4, 1) denote the numbers of plus and minus signs in the VEVs and

they also serve to describe the unbroken symmetry of the domain wall at

finite w — the symmetry left over after the “clash”. These are, respectively,

U(5) , U(3) ⊗ U(2) and U(4) ⊗ U(1) , (6.17)

and they arise for the following reasons. The ansatz for domain-wall config-

urations that interpolate between the stated boundary conditions is χ(w) =

h(w)χ(−∞)+g(w)χ(+∞), where h asymptotes from 1 to 0, and g from 0 to

1, for w going from −∞ to +∞. The first configuration, which interpolates

between −fmin and +fmin for all components fi(w), breaks SO(10) to U(5)1

at all values of w, because the relative magnitudes of the components are

always the same at a given w. It is a non-CoS domain wall, like the dashed

line in Figure 6.1, and we do not consider it further.

The second configuration has an equal-magnitude 3 × 3 block (of 2 × 2

submatrices), and an equal-magnitude 2×2 block. The unbroken symmetry

is then U(5)1 ∩ U(5)2 = U(3) ⊗ U(2). Similarly, the third configuration’s

block structure leads to U(5)1 ∩ U(5)3 = U(4) ⊗ U(1). One can solve the

Euler-Lagrange equations to determine the exact form of the domain-wall

profiles, and further compute their relative energy densities. It turns out

that for certain parameter choices analytic solutions exist, and in this case

the third configuration, the one corresponding to f
(4,1)
min , has the lowest energy

of the three, and so is the topologically stable one [200]. It may be that, in

other parameter regions, one of the other configurations is the stable one,

and we shall assume such a thing can be arranged in the following discussion,

although it is of no great consequence if it cannot.

Given this exposition of an SO(10) domain-wall brane model, we would

now like to examine the localisation of the gauge bosons associated with

the unbroken symmetry groups, using the framework of the DS mechanism.

Consider first the configuration which has an unbroken SU(4) on the brane.

This symmetry group is embedded in SU(5)1 on the w < 0 side of the

wall, and SU(5)3 on the w > 0 side. Drawing on the dynamics of the DS

mechanism, the SU(4) gauge bosons are thus localised to the wall because,

by assumption, both SU(5)1 and SU(5)3 are in confinement phase in their
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respective bulk regions. This establishes the connection between clash-of-

symmetries and Dvali-Shifman by way of an explicit, rigorously worked-out

solution. Unfortunately, we cannot turn such a toy model into something

phenomenologically acceptable, since the standard model gauge group can-

not be realised.

Now consider the second configuration, with the symmetry

U(3) ⊗ U(2) = SU(3) ⊗ SU(2) ⊗ U(1) ⊗ U(1) (6.18)

on the brane; this is closer to what we need for a realistic model. The

gauge bosons associated with the SU(3) ⊗ SU(2) factor in equation (6.18)

are localised via the DS mechanism because this factor is a subgroup of both

SU(5)1 (the bulk symmetry for w < 0) and SU(5)2 (the bulk symmetry for

w > 0). However, to recover the standard model, we also require a DS-

localised U(1)Y factor, and this turns out to be a problem.

Let us examine the generators of the two U(1)’s in equation (6.18) to

see how their associated gauge fields fare in a DS context. The asymptotic

gauge groups can be written as

U(5)1 = SU(5)1 ⊗ U(1)X1 and U(5)2 = SU(5)2 ⊗ U(1)X2 . (6.19)

Denote by Y1 the hypercharge generator inside SU(5)1, and Y2 the one inside

SU(5)2. The two U(1)’s in equation (6.18) can be taken to be generated

either by Y1 and X1, or by Y2 and X2, and each pair can be written as

linear combinations of the other pair, as per our previous discussion of the

relationship between the two groups H and Hg. Now, either Y1 or Y2 can be

the physical hypercharge Y , and which one is selected will be an accident

of spontaneous symmetry breaking.6 At some energy above the electroweak

scale, the breaking

U(1)Y1 ⊗ U(1)X1 = U(1)Y2 ⊗ U(1)X2 −→ U(1)Y , (6.20)

with either Y = Y1 or Y = Y2, will have to take place to produce an effective

standard model at low-energies (this will require an additional Higgs field).

Suppose Y = Y1 is spontaneously selected, and so U(1)Y originates from

6It cannot be that Y1 = Y2 because, by construction of the clash-of-symmetries config-
uration, SU(5)1 6= SU(5)2.
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inside SU(5)1. By the DS mechanism, the hypercharge gauge boson is thus

unable to propagate into the w < 0 bulk, where its parent group is unbroken

and confining. But this is not the case for the w > 0 region. The generator

Y = Y1 is a linear combination of Y2 and X2, and so the hypercharge gauge

field is a linear combination of the gauge fields associated with Y2 and X2.

The Y2 portion of the hypercharge gauge field is forbidden from entering the

w > 0 region of the bulk, since there it must form part of an SU(5)2 singlet,

but the X2 portion has no such restriction. The X2 portion is immune

from the DS effect because the associated group U(1)X2 is Abelian and not

confining. After electroweak symmetry breaking, this will imply that both

the photon and neutral Z boson will leak into the w > 0 bulk, which is

phenomenologically ruled out. In the reverse situation, where the physical

Y is actually Y2, leakage of these bosons into w < 0 will occur.

So our extension to SO(10), using the clash of symmetries, does not seem

to allow for localised standard-model gauge bosons. For the configuration

where U(4)⊗U(1) is the symmetry on the brane we obtain a localised SU(4)

factor, which is no good from the point of view of the standard model gauge

group. The other clash-of-symmetries configuration had equation (6.18) as

the brane symmetry, but only the gluons and the two charged W bosons were

fully localised, corresponding to the embedding of the group SU(3)⊗ SU(2)

in confining SU(5)’s on either side of the wall. The photon and Z boson were

semi-delocalised to one half of the bulk. In order to localise these latter two

fields, we must arrange for the U(1)Y to be part of a confining group on both

sides of the domain wall. One way do achieve this is to have, instead of a lo-

calised standard model, a localised grand unified model, because localisation

of a GUT group guarantees localisation of its constituent subgroups, which

includes U(1)Y . Following this idea, we would be inclined to first try and

localise an SU(5) GUT to the brane, which would seem to dictate having

SO(10) as the confining parent-group in the bulk. The clash-of-symmetries

mechanism requires the action to be invariant under a yet larger symmetry,

leading us to consider E6.

6.3 Structure of the E6 invariants

The failure of the SO(10) model motivates us to consider an E6 invariant

theory. Given this, our first task is to engineer an E6 symmetric Higgs
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potential which has global minima that break

E6 → SO(10) ⊗ U(1) , (6.21)

the latter of which is a maximal subgroup. To implement the clash-of-

symmetries, the Higgs potential must be able to break E6 to differently

embedded subgroups. Furthermore, we need to identify which particular

embedding each minimum corresponds to, which will allow us to make cor-

rect choices for the boundary conditions of the scalar field. This section is

devoted to such an analysis, and the results are used later on to construct

a model that incorporates some promising features.

The scalar field that will play the simultaneous role of symmetry break-

ing, kink formation and DS gauge boson localisation is the adjoint multiplet

χ(xM ). It shall be represented by

χ(xM ) =
78
∑

α=1

fα(x
M )X̂α , (6.22)

where the seventy-eight X̂’s are matrix representations of the generators

for the 27 of E6, and the seventy-eight f(xM)’s are five-dimensional field

components. This adjoint transforms as

χ→ UχU † , (6.23)

where U is an E6 transformation in an appropriate matrix representation.

The Higgs potential for χ is constructed out of adjoint invariants, which,

according to equations (6.22) and (6.23), are

In = Tr(χn) = Tr(X̂α1X̂α2 · · · X̂αn)fα1fα2 · · · fαn , (6.24)

which are simply the nth order Casimir invariants. According to Racah [225]

and Harvey [226], the independent invariants are

I2, I5, I6, I8, I9, I12. (6.25)

Note the presence in this list of invariants with odd powers, namely I5 and

I9. This means that the discrete Z2 symmetry χ→ −χ is not a subgroup of

E6, since such a negation of χ (all the components fα of χ) will also negate
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the odd invariants. We shall exploit this feature later on.

Using these invariants, the most general Higgs potential is the sum of

products of a free parameter and various In’s. We are in five-dimensions and

there is no reason to stop writing down terms at, say, quartic order in χ. In

fact, we are going to need higher-order terms to get the requisite symmetry

breaking patterns. Thus, the Higgs potential is

Vfull = τ1I2 + τ2I
2
2 + τ3I5 + τ4I

3
2 + τ5I6 + τ6I2I5

+ τ7I
4
2 + τ8I2I6 + τ9I8 + τ10I

2
2I5 + τ11I9

+ τ12I
5
2 + τ13I

2
2I6 + τ14I2I8 + τ15I

2
5

+ τ16I
3
2I5 + τ17I2I9 + τ18I5I6 + τ19I

6
2

+ τ20I
3
2I6 + τ21I

2
2I8 + τ22I2I

2
5 + τ23I

2
6 + τ24I12 + . . . , (6.26)

where we have stopped writing at twelfth order. At this point in the game,

we are faced with the rather daunting task of analysing the global minima

of Vfull, which contains seventy-eight fields and traces of products of 27× 27

matrices.

To make life a bit easier, we note that one can always transform any

VEV pattern to a standard form given by linear combinations of just the

six generators in the Cartan subalgebra of E6. This reduces our space to

six fields and renders the problem much more tractable. The corresponding

generators, the six diagonal generators Ta (a = 1, . . . , 6), are given as the

columns in Table 6.1. To be clear, we write out the first two:

T1 =
1

12
diag (4, −2 · 110×10, 116×16) , (6.27a)

T2 =
1

4
√

15
diag (0, 2 · 15×5, −2 · 15×5, −5, 3 · 15×5, −110×10) , (6.27b)

where 1n×n is the n× n identity matrix. The orthonormalisation condition

for the generators is

Tr(TaTb) =
1

2
δab . (6.28)

These generators can be found by examining the U(1) charges that

emerge from the branching of the 27. For example, under

E6 → SO(10) ⊗ U(1)T1 → [ SU(5) ⊗ U(1)T2 ] ⊗ U(1)T1 , (6.29)
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the fundamental representation of E6 branches as

27 → 1(4) + 10(−2) + 16(1) (6.30a)

→ 1(4, 0) + [5(−2, 2) + 5∗(−2,−2) ]

+ [1(1,−5) + 5∗(1, 3) + 10(1,−1) ] . (6.30b)

Here, the bold-face number is the dimension of the multiplet. For the first

line, the number in the parenthesis is the U(1)T1 hypercharge, multiplied by

12 to reduce clutter. In the second and third lines, the two parenthesised

numbers are the U(1)T1 and U(1)T2 charges respectively, where the second

of these is multiplied by 4
√

15.

To understand the Higgs potential Vfull we need to understand the group-

theoretic structure of each invariant in isolation. Knowing the extrema of the

In will allow us to determine the locations of the vacua needed to implement

the clash of symmetries.

Let us begin with I2. Because of the normalisation defined by equa-

tion (6.28), we have

I2 = Tr(χ2) =
1

2

(

f2
1 + f2

2 + f2
3 + f2

4 + f2
5 + f2

6

)

, (6.31)

where the six fields fa are those associated with the six diagonal generators

Ta. This invariant is isotropic (it has a global O(6) symmetry) and has a

single minimum at fa = 0 for all a. This trivial solution for χ does not break

E6 at all, but we shall find a use for I2 later on.

The rest of the invariants are not isotropic, and their minima and max-

ima are defined by certain sextuplets of values corresponding to the six fa.

We must determine these values. Actually, we are essentially done: the sex-

tuplets are the rows of Table 6.1, while the columns are the generators. The

diagonal generators themselves play the remarkable dual-role of telling us

exactly where the extrema of the non-isotropic invariants lie. Taking linear

combinations of the generators, where the coefficients are given by the weight

vectors for the fundamental of E6 (which is what each row corresponds to),

defines all twenty-seven embeddings of SO(10) ⊗ U(1) in E6. They hence

tell us the values for the fa needed to achieve the requisite vacua. We have

yet to find a group-theoretic argument as to why such a statement is true,

and for now we are content with providing a proof by explicit computation.
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60T1 60T2 60T3 60T4 60T5 60T6

pos. 20f1 20f2 20f3 20f4 20f5 20f6

1 20 0 0 0 0 0

2 −10 2
√

15 3
√

10 −5
√

6 0 0

3 −10 2
√

15 3
√

10 5
√

6 0 0

4 −10 2
√

15 −2
√

10 0 5
√

2 5
√

6

5 −10 2
√

15 −2
√

10 0 5
√

2 −5
√

6

6 −10 2
√

15 −2
√

10 0 −10
√

2 0

7 −10 −2
√

15 −3
√

10 5
√

6 0 0

8 −10 −2
√

15 −3
√

10 −5
√

6 0 0

9 −10 −2
√

15 2
√

10 0 −5
√

2 −5
√

6

10 −10 −2
√

15 2
√

10 0 −5
√

2 5
√

6

11 −10 −2
√

15 2
√

10 0 10
√

2 0

12 5 −5
√

15 0 0 0 0

13 5 3
√

15 −3
√

10 5
√

6 0 0

14 5 3
√

15 −3
√

10 −5
√

6 0 0

15 5 3
√

15 2
√

10 0 −5
√

2 −5
√

6

16 5 3
√

15 2
√

10 0 −5
√

2 5
√

6

17 5 3
√

15 2
√

10 0 10
√

2 0

18 5 −
√

15
√

10 −5
√

6 5
√

2 5
√

6

19 5 −
√

15
√

10 −5
√

6 5
√

2 −5
√

6

20 5 −
√

15
√

10 −5
√

6 −10
√

2 0

21 5 −
√

15
√

10 5
√

6 5
√

2 5
√

6

22 5 −
√

15
√

10 5
√

6 5
√

2 −5
√

6

23 5 −
√

15
√

10 5
√

6 −10
√

2 0

24 5 −
√

15 −4
√

10 0 −5
√

2 −5
√

6

25 5 −
√

15 −4
√

10 0 −5
√

2 5
√

6

26 5 −
√

15 −4
√

10 0 10
√

2 0

27 5 −
√

15 6
√

10 0 0 0

Table 6.1: The six diagonal generators T1–6 of E6. Also the coefficients f1–6 of
these generators that yield a linear combination that breaks E6 → SO(10) ⊗ U(1).
The diagonal elements of the generator Tn are found by taking the nth column and
multiplying it by 1/60. The “pos.” column is just the position of the entry in
the diagonal matrix. There also exist twenty-seven distinct linear combinations of
T1–6 that yield a diagonal matrix which is just a rearrangement of T1. These linear
combinations are given by

∑6
a=1 faTa, where the sextuplet f1–6 takes values from

one of the rows of the table, multiplied by 1/20, and are exactly the weight vectors
for the fundamental representation of E6. The negatives of such linear combinations
are also valid rearrangements. The “pos.” column specifies which position the
lone 1/3 element appears in the diagonal matrix of the permuted version of T1.
Figure 6.2 gives a pictorial representation of the twenty-seven rearranged versions
of the generator T1. We can make the physical interpretation that, for an adjoint
field χ, the vacuum state 〈χ〉 ∝∑6

a=1 faTa breaks E6 → SO(10) ⊗ U(1).
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure 6.2: A pictorial representation of the twenty-seven rearrangements of the
diagonal generator T1 of E6. Each rearrangement can be reconstructed from one of
the twenty-seven rows (or columns) of symbols in this picture. To find the diagonal
entries of the nth rearrangement, read along the nth row and translate the symbols
according to: circles © correspond to the single 1/3 entry, squares � to −1/6 and
crosses + to 1/12 (note that adjacent crosses are touching). The number in the
centre of each circle tells its row and column number (being the same). Row n
of this picture corresponds precisely to row n of Table 6.1 in the sense that the
linear combination

∑6
a=1 faTa, where the f1–6 are chosen from row n of Table 6.1,

yields the rearranged version of the generator T1 represented by the symbols of
row n in this picture. This picture also provides a simple encoding telling the
group that is the intersection of any possible combination of two of the twenty-
seven differently embedded SO(10) ⊗ U(1) subgroups. If m and n are the rows
corresponding to the two rearranged generators that correspond to two particular
embeddings, then the symbol in row m, column n (equivalently column m, row n)
tells the intersection H of these two groups: a circle © is H = SO(10) ⊗ U(1), a
square � is H = SO(8)⊗ U(1)2, and a cross + is H = SU(5) ⊗U(1)2. The picture
is symmetric along the diagonal.
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6.3.1 Truncated analysis of I6

For now, we are just going to concentrate on the even invariant I6 with only

f1, f2 and f3 non-zero. This allows us to make clear the method used to

analyse the more general case with all fa included. In the truncated case,

the sextic invariant is

I6 = Tr
[

(f1T1 + f2T2 + f3T3)
6
]

. (6.32)

To facilitate in visualising its structure, we go to spherical-polar coordinates

(r, θ, φ) via

f1 = r sinφ cos θ , f2 = r sinφ sin θ , f3 = r cosφ , (6.33)

where the domains are r ≥ 0, −π < θ ≤ π and 0 ≤ φ ≤ π. Equation (6.32)

now takes the form

I6 =
r6

518400

[

710 cos6 φ+ 144 sin φ cos5φ
(√

10 cos θ −
√

6 sin θ
)

+ 30 sin2φ cos4φ
(

51 + 4 cos 2θ − 4
√

15 sin 2θ
)

+ 60
√

2 sin3φ cos3φ sin θ
(

2
√

3 + 3
√

3 cos 2θ −
√

5 sin 2θ
)

− 45 sin4φ cos2φ
(

−34 + 2 cos 2θ + 7cos 4θ − 2
√

15 sin 2θ +
√

15 sin 4θ
)

+
3

2
sin6φ

(

440 + 15 cos 2θ + 84 cos 4θ + 11 cos 6θ − 15
√

15 sin 2θ

+ 12
√

15 sin 4θ − 3
√

15 sin 6θ
)]

(6.34)

Note how the radial dependence r factors out completely, leaving us with

just a two-dimensional parameter space to study.

Take, for the moment, the slice of the sextic invariant where φ = π/2 and

so f3 = 0. This simplifies our analysis further to just linear combinations of

T1 and T2, parameterised by the single variable θ. A plot of the resulting

invariant, I6(φ = π/2)/r6, is given in Figure 6.3. While the minima of this

function break E6 to certain subgroups and have interesting properties in

their own right, we are concerned here with the four7 degenerate, global

maxima which break E6 to the maximal subgroup SO(10) ⊗ U(1). Since

breaking to SO(10) ⊗ U(1) occurs at a maximum within this invariant, we

shall need to negate I6 when using it for model building purposes (by having

7There are five maxima in the figure, but we ignore the one on the far left as it is
equivalent to that on the far right, and we have specified θ > −π.
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9.0x10-4
1.0x10-3
1.1x10-3
1.2x10-3
1.3x10-3
1.4x10-3
1.5x10-3
1.6x10-3

-π -π/2 0 π/2 π

I 6
/r

6

θ

Figure 6.3: Plot of the sextic invariant I6/r
6 as a function of θ for the slice φ = π/2.

Starting from the left, and not including the repeated extrema at θ = −π, there
are four global maxima at θ = −arccos(1/4), 0, arccos(−1/4), π. In reference to
Table 6.1, these correspond respectively to entry 12, entry 1, negative of entry 12
and negative of entry 1. Such linear combinations of the generators break E6 to
differently embedded SO(10) ⊗ U(1) subgroups.

τ5 < 0 in equation (6.26)). This is discussed further in Section 6.3.2; for

now we are concerned with determining the precise locations of the relevant

extrema in the sextic invariant.

The four global maxima in Figure 6.3 are given by θ = −arccos(1/4),

θ = 0, θ = arccos(−1/4) and θ = π. This translates, respectively, to four

different vacuum values for χ = faTa:

〈χ1〉
r

=
1

4
T1 −

√
15

4
T2 , (6.35a)

〈χ2〉
r

= T1 , (6.35b)

〈χ3〉
r

= −1

4
T1 +

√
15

4
T2 , (6.35c)

〈χ4〉
r

= −T1 . (6.35d)

These vacuum values are constant, 27 × 27 matrices. Writing them out

explicitly (not shown here), we find that all four of these vacuum values

have the exact same diagonal entries as T1, but they come with a different

ordering. Therefore, we can easily evaluate the sextic invariant:

I6
r6

= Tr
(

〈χ1–4〉6
)

= Tr
(

T 6
1

)

=
11

6912
≃ 1.591 × 10−3 . (6.36)

This value is precisely the value of the maxima in Figure 6.3, as it should

be. The particular ordering of entries in a given matrix representation of
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a group correspond only to some (convenient or otherwise) choice of basis.

Since T1 is associated with the embedding of an SO(10) ⊗ U(1) structure

in E6, we conclude that all four vacua described by equation (6.35) break

E6 → SO(10)⊗U(1). From the point of view of the particular basis that we

have chosen to do our physical analysis in, say that defined by T1–6, the four

vacua 〈χ1–4〉 break E6 to isomorphic but differently embedded SO(10)⊗U(1)

maximal subgroups.8 An implementation of the clash-of-symmetries mech-

anism is now imminent, but, before we do such a thing, we shall complete

our analysis of the invariants.

Looking to Table 6.1, we see that the linear combinations of equa-

tion (6.35) that give rise to the different embeddings are exactly the first

and twelfth rows of the table (up to some overall factor). But this table was

originally constructed by writing the six diagonal generators as the columns!

It is in fact true that the other twenty-five rows of this table correspond to

all other possible linear combinations of the six generators which yield a di-

agonal matrix which is just a re-ordering of T1. To be clear, the generators

are given by each of the six columns multiplied by 1/60, and the possible

sextuplets of values (f1, f2, f3, f4, f5, f6) that define the vacuum state

〈χ〉 = faTa are given by the twenty-seven rows multiplied by 1/20. Note

that only the ratio of these two normalisation factors, being 3, is meaningful;

in constructing Table 6.1 we just wanted to minimise clutter, and keep all

the elements normalised to the same factor. This “rearrangement property”

seems truly remarkable, and we suspect that some (unknown to us) aspect

of group theory can tell us what is really going on here. We conjecture that

this property is true for all simple Lie groups.9

For reference, Figure 6.2 provides a pictorial representation of the twenty-

seven possible rearrangements of the diagonal generator T1. Row n in this

figure correspond to the linear combination given by row n in Table 6.1. See

the caption of Figure 6.2 for the mapping of the symbols (©, �, +) to the

8An explicit calculation which establishes that the embeddings are in fact different is
given in Section IV of Paper 2 in the author’s list of publications.

9This discovery came late in the course of the current thesis, and we have not had time
to explore it fully. This “rearrangement conjecture” is true also for the diagonal generators
of SU(2), SU(3) and SU(5), where, if Tr(TaTb) = δab/2 is the associated normalisation,
then the coefficients of the linear combinations are the diagonal entries multiplied by 2,

√
3

and
p

5/2, respectively (in the E6 case this factor is 3). One may also inquire about the
rearrangement of the entries of the other diagonal generators (not just T1). It seems, in
the case of SU(3) at least, that permutations of the coefficients (permutations of the rows)
define linear combinations that yield rearranged versions of the other diagonal generators.
This requires more study.
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appropriate fractions. From this figure one can also determine the symme-

try group that is the intersection of two differently embedded SO(10)⊗U(1)

subgroups. This is done by examining the two rows of symbols correspond-

ing to the two embeddings, and counting the number of columns that have

squares in both rows, those columns that have a square in one row and a

cross in the other row, and so on. We shall not provide the details of this

as it is straightforward. Quite amazingly though, this figure actually tells

you the answer up front: the intersection of two SO(10) ⊗ U(1) subgroups

corresponding to rows m and n is given by the symbol in row m and col-

umn n (equivalently column m and row n)! There are three possibilities:

SO(10) ⊗ U(1) (if the two embeddings are the same), SO(8) ⊗ U(1)2 and

SU(5) ⊗ U(1)2. Again, see the caption of the figure for the mapping of the

symbols to these groups. We shall draw on these results later.

One more interesting property of the degenerate vacua requires explain-

ing. As exemplified by 〈χ4〉, we can trivially modify T1 by negating all of its

elements. This yields a distinct vacuum in the I6 topography, which breaks

E6 to a different SO(10)⊗U(1) embedding than does the related 〈χ2〉. Note

that 〈χ3〉 = −〈χ1〉, so these two vacua are similarly related. Therefore, the

twenty-seven rows of Table 6.1 also have a Z2 partner, obtained by negat-

ing each element in the row. We shall return to this observation in our

discussion of the full space of extrema of the invariants.

Returning to the analysis of I6, we relax the restriction on φ and con-

sider the two-dimensional structure of the sextic invariant given by equa-

tion (6.34). The easiest way to visualise this equation is via a contour plot,

which is what is shown in Figure 6.4. The previous plot in Figure 6.3 is

subsumed in this three-dimensional graph as the horizontal line at φ = π/2.

The maxima are marked with a black + sign, and there are two additional

ones that correspond to VEVs which are degenerate with those in equa-

tion (6.35). The one at the bottom left is located at θ = − arccos(
√

5/8),

φ = arccos(
√

9/10) and that at the top right at θ = arccos(−
√

5/8),

φ = arccos(−
√

9/10). The corresponding vacua are, respectively,

〈χ5〉
r

=
1

4
T1 −

√
15

20
T2 +

3√
10
T3 , (6.37a)

〈χ6〉
r

= −1

4
T1 +

√
15

20
T2 −

3√
10
T3 . (6.37b)

They correspond to the twenty-seventh row of Table 6.1.



194 Chapter 6. E6 invariance and the clash of symmetries
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Figure 6.4: Contour plot of the sextic invariant I6/r
6 as a function of θ and φ.

The degenerate global maxima breaking E6 to various SO(10)⊗U(1) subgroups are
marked with black + signs, while the local minima are indicated with gray × signs.
The row of four maxima along φ = π/2 correspond to the global maxima displayed
in Figure 6.3. The two additional maxima correspond to entry 27 in Table 6.1.

6.3.2 The full analysis

Our analysis of I6 can be extended to include all six Cartan components.

Going to six-dimensional hyperspherical polar coordinates involves writing

the coefficients f1–6 in terms of the modulus r ≥ 0, the azimuthal angle

−π < θ ≤ π and four zenith angles 0 ≤ φ1,2,3,4 ≤ π. As before, the param-

eter r factors out and the group-theoretic structure of the sextic invariant

is determined entirely by the angles (θ, φ1–4). The domain of this space is

finite, so the search for extrema finds an adequate realisation in a numerical

scan. We have performed such a scan by making small, finite steps sys-

tematically through the parameter space, and computing the derivative of

I6 (with respect to each parameter10) at each point to determine if it is a

minimum, maximum or saddle point.11

This numerical study found fifty-four global maxima. Analytic expres-

sions for the locations of these maxima were subsequently reverse engineered.

The corresponding values of f1–6 are given exactly by the twenty-seven rows

of Table 6.1, multiplied by 1/20 for half of the maxima, and multiplied by

−1/20 for the other half. As discussed previously, the linear combination

10A general, analytic expression for the derivative can be found easily by hand, which
we then evaluated numerically at each point.

11We used 214 steps for θ and 107 steps for each of φ1–4 which gives about 2.8 × 1010

points in total, and the scan took roughly 53 hours.
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faTa is simply a rearrangement of the entries in T1, possibly with an overall

factor of −1. A rather neat fact is the following. In Table 6.1, the “pos.”

(position) column specifies the location of the SO(10)-singlet 1
3 element in

the permuted version of T1, where the permutation is given by the sextu-

plet in that particular row. For example, if we pick the fa to be given by

row eighteen, then the linear combination faTa has a single 1
3 entry at the

eighteenth position in the diagonal 27 × 27 matrix. This feature manifests

clearly in Figure 6.2 as the circles along the diagonal. Physically, these lin-

ear combinations, the rearrangements, all yield a vacuum structure which

breaks E6 to SO(10)⊗U(1), and so we are able to use I6 to do such breaking

in fifty-four different ways, where the doubling is due to the choice of overall

sign for the VEV.

Moving on to the other even invariants, I8 and I12, we have found them

to have exactly the same qualitative structure as I6. The plots of the trun-

cated versions of these higher-power invariants, corresponding to Figures 6.3

and 6.4, are very similar, and a full numerical search of the extrema of I8

and I12 revealed again the fifty-four degenerate maxima given by Table 6.1.

For the odd invariants I5 and I9 we found twenty-seven global maxima,

corresponding to the positive versions of the rows of Table 6.1, along with

twenty-seven global minima, corresponding to the negative versions of the

rows. This result tells us that the Z2 negation-relation between the two sets

of twenty-seven global maxima in the even invariants actually lies outside

E6, as the odd invariants change sign (so they are not invariant) under the

action of such a Z2.

This latter result is very useful from the point of view of the clash of

symmetries. If we impose that our E6 theory is also invariant under such aZ2, where χ→ −χ, then we eliminate any terms in the Higgs potential which

have odd powers of odd invariants (like τ3 and τ6 in equation (6.26)), and so

induce a vacuum manifold with two disconnected copies, as per Figure 6.1.

If we are careful with our choices for the rest of the parameters, then the vac-

uum structure of each piece of the manifold will have as their global minima

the SO(10) ⊗ U(1)’s that we have identified. The two copies will each have

twenty-seven degenerate global maxima that break E6 → SO(10)⊗U(1), and

these vacua will further be degenerate among the two copies. Of course, we

need our vacua to be minima to have stable kink configurations, which can

be easily achieved by taking the coefficient of, say, I6 to be negative. To

ensure that the Higgs potential is then bounded from below, just add terms
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proportional to positive (I2)
m as appropriate. This will not destroy the

vacuum structure because I2 is isotropic, as per equation (6.31).

Finally, we remark on a group-theoretic aspect of the number of embed-

dings of SO(10) ⊗ U(1) in E6. They must correspond, physically speaking,

to choosing different SU(3) ⊗ SU(2) subgroups for colour and weak-isospin.

According to the SU(3) ⊗ SU(3) ⊗ SU(3) maximal subgroup of E6, there

are three independent choices for the colour group. The weak-isospin group

can then be selected as the I-, U - or V -spin subgroup of either of the two

remaining SU(3)’s. This gives 3 × 6 = 18 choices for SU(3) ⊗ SU(2) em-

beddings. By an explicit calculation,12 it is found that each SU(3) ⊗ SU(2)

is contained in the intersection of three different SO(10)’s, which suggests

there should be 18 × 3 = 54 embeddings of SO(10). However, recognising

that SO(10) contains an SU(2) ⊗ SU(2) subgroup, we see that the correct

number of independent embeddings is actually 54/2 = 27.

6.4 An E6 domain-wall model

Having performed a rather comprehensive analysis of the structure of the

Higgs potential for an E6 adjoint field, we proceed in this section to piece

together, and analyse, the basic ingredients for an E6 invariant domain-wall

brane model of an infinite extra dimension. The clash-of-symmetries and

Dvali-Shifman mechanisms play a large role in determining the structure of

the kink background configuration, and, after obtaining the solution for the

kink, we shall analyse the spectrum of localised fermions.

In our model there is a single background scalar field: the adjoint χ.

This Higgs potential will be a restricted version of Vfull, which is given by

equation (6.26). For clash-of-symmetries sake, we require a discrete Z2 sym-

metry which lies outside E6, and this can be arranged by imposing χ→ −χ
as a symmetry, as discussed in Section 6.3.2. This eliminates odd powers

of odd invariants. We have also discussed how any one of the invariants In

with n 6= 2 provide us with global extrema that break E6 → SO(10)⊗U(1).

The lowest order Higgs potential compatible with such constraints is the

order-six potential

V = V0 − λ1I2 + λ2(I2)
2 +

4

3
λ3(I2)

3 − 2304κI6 , (6.38)

where some peculiar numbers and signs have been inserted for later conve-

12See Paper 2 in the author’s list of publications.
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nience. Recall that we need I6 to appear with a negative coefficient to have

the SO(10)⊗U(1) vacua the global minima. We also need the I2 term neg-

ative to encourage a non-zero VEV (so that χ = 0 is not a minimum), and

the (I2)
3 term positive to ensure that the potential is bounded from below.

Additional constraints on the parameters shall be derived in Section 6.4.1.

The potential V will induce E6 → SO(10) ⊗ U(1), and for the clash-

of-symmetries we require two vacua for χ that are not related by the Z2.

Acceptable choices for the minima are those defined by rows one and twelve

of Table 6.1. Let us make some re-definitions to simplify the notation a bit.

Take E = T1 and X = T2. The first minimum is obtained by breaking in

the direction of E, and its Z2 pair, in the direction of −E. Recall from

Section 6.1 that both of these minima respect the same symmetry, which we

denote simply by

H = SO(10) ⊗ U(1)E . (6.39)

Furthermore, we shall label the two respective vacua by

|0〉 = (10,+) and |0〉z = (10,−) , (6.40)

where a ‘+’ sign indicates that the vacuum lies in the V piece of the manifold,

and a ‘−’ sign indicates the Vz piece.

The second pair of minima come from considering the linear combination

of row twelve of Table 6.1:

E′ =
1

4
E −

√
15

4
X . (6.41)

The corresponding rearranged X is

X ′ = −
√

15

4
E − 1

4
X , (6.42)

and is found by demanding Tr(E′X ′) = 0. Breaking in the direction of E′

leaves the vacuum respecting the symmetry group13

Hg = SO(10)′ ⊗ U(1)E′ , (6.43)

and the two vacua are

|0; g〉 = (10′,+) and |0; g〉z = (10′,−) . (6.44)

13This embedding has been used previously in unified model building [227, 228, 229, 230].
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As per the discussion in Section 6.1, and as represented in Figure 6.1,

the topological CoS domain wall connects (10,+) and (10′,−), accompanied

by a CoS anti-domain-wall connecting (10,−) and (10′,+). The symmetry

on the wall is H ∩Hg, which can be determined by reading off the symbol

at row twelve, column one of Figure 6.2. It is a cross, meaning that the

intersection group is 14

[ SO(10)⊗U(1)E ]∩ [ SO(10)′ ⊗U(1)E′ ] = SU(5)⊗U(1)E ⊗U(1)E′ . (6.45)

Since SU(5) is fully contained in both SO(10) and SO(10)′, the Dvali-

Shifman mechanism localises all the SU(5) gauge bosons to the domain wall,

including the photon and the neutral Z boson. This vindicates our efforts

in upgrading from an SO(10) invariant action to an E6 invariant one. Note

that the additional U(1)’s are there because adjoint configurations cannot

rank-reduce.

There also exists the topological non-CoS domain wall that connects

(10,+) with (10,−) and breaks E6 to SO(10) ⊗ U(1)E at all w, as well

as the non-CoS configuration interpolating between (10′,+) and (10′,−),

breaking E6 to SO(10)′ ⊗ U(1)E′ at all w. The non-topological kinks are

those connecting (10,+) to (10′,+), and (10,−) to (10′,−), which are both

CoS-like.

6.4.1 Domain-wall solutions

We are now going to solve the Euler-Lagrange equations for χ, with the

potential V given by equation (6.38), to find kinks giving an explicit re-

alisation of the symmetry breaking defined by equation (6.45). Since the

requisite vacua can be obtained with linear combinations of only E and

X — equivalently E′ and X ′, or even E and E′ — we need only consider

two of the seventy-eight components of χ:

χ = fEE + fXX ≡ f̃EE + fE′E′ , (6.46)

with the relationships

f̃E ≡ fE +
1√
15
fX , fE′ ≡ − 4√

15
fX . (6.47)

14See Section IV of Paper 2 in the author’s list of publications for a more in-depth
analysis which examines the flipping of the roles of the SU(5) multiplets.
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Figure 6.5: (a) Contour plot of the Higgs potential as a function of the two
field components fE and fX . The darkest regions are the global minima in the
order (10,+), (10′,−), (10,−) and (10′,+) reading anticlockwise from the rightmost
minimum. The light area near the origin is a local maximum. (b) Three-dimensional
plot of the Higgs potential as a function of the two field components fE and fX .
The white lines show the clash-of-symmetries domain wall (topmost) and the non-
CoS domain wall (bottommost). The parameters used in both plots are κ = 0.8,
λ1 = 1.0, λ2 = 0, λ3 = 22.0 and V0 = −0.1589.

Here, the specific linear combinations have been determined according to

equation (6.41). The (E,X) basis is more convenient for solving the Euler-

Lagrange equations, because E and X are orthogonal as per equation (6.28).

The (E,E′) basis, however, is the simplest one for thinking about the two

embeddings.

To provide a visual aid for the following analysis, we have provided a

contour plot in Figure 6.5a of the Higgs potential V (fE, fX) for a certain

choice of parameters; V is defined by equation (6.38) and has χ as per equa-

tion (6.46). It is important to realise that although the minima (10,+) and

(10′,+) [similarly (10,−) and (10′,−)] look as though they are disconnected

by E6, this is just an illusion created by only plotting the two-dimensional

(fE, fX) slice through the seventy-eight-dimensional adjoint representation

space. Minima with opposite parities are definitely disconnected from each

other.

Our aim is to find kink solutions for such a Higgs potential. The VEVs

we want for the boundary conditions are

(f̃E , fE′) = v (1, 0) , (6.48)
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on one side of the wall, say w → −∞. This corresponds to the vacuum

(10,+) and breaks E6 → SO(10) ⊗ U(1)E . The other VEV, for the other

side of the wall, is

(f̃E , fE′) = −v (0, 1) , (6.49)

which is the vacuum (10′,−) giving E6 → SO(10)′ ⊗ U(1)E′ . The relative

minus sign between equations (6.48) and (6.49) ensures that we connect

vacua from the disconnected manifolds V and Vz, while the flipping from

(1, 0) to (0, 1) ensures a CoS configuration. The minus sign also leads to a

remarkable outcome for fermion zero-mode localisation, which is explained

in the next subsection. In terms of the (E,X) basis, these same VEVs are

(fE, fX) =















v (1, 0) for w → −∞

v

(

−1

4
,

√
15

4

)

for w → +∞
. (6.50)

The “direction” of the boundary conditions, the pairs of values in equa-

tion (6.50), are fixed because we knew a priori exactly the form of the

E6 breaking at the boundaries. The “magnitude”, given by v > 0, must

be determined, and will depend on the particular parameters in the Higgs

potential (and may not exist in certain parameter regimes).

Our task of analysing the Higgs potential V in order to determine v is

quite straightforward, so long as we draw on the results of Section 6.3. By

construction, we know that the boundary conditions we have chosen are

global extrema of I6. We also know that I2 is isotropic. Therefore, if we

substitute in either of the set of boundaries given by equation (6.50) into

the invariants, we obtain

I2 =
1

2
v2 , (6.51a)

I6 =
11

6912
v6 . (6.51b)

Here, we have used, respectively, equations (6.31) and (6.36). In other

words, when the fields fE and fX are “pointing”, with magnitude v, in

the direction of an extrema of I6, as they are at the boundaries, we can

write equation (6.38) as

V = V0 −
λ1

2
v2 +

λ2

4
v4 +

λ3

6
v6 − 11κ

3
v6 . (6.52)
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Figure 6.6: Clash-of-symmetries domain-wall solutions interpolating between
(10,+) at w = −∞ and (10′,−) at w = +∞. The isomorphic but differently em-
bedded subgroups at these boundaries are SO(10) ⊗ U(1)E and SO(10)′ ⊗ U(1)E′

respectively, corresponding to row 1 and negative of row 12 of Table 6.1. Their
intersection (clash) is the subgroup SU(5)⊗U(1)2. The parameters used in the left
plot are κ = 0.2, λ1 = 1.5, λ2 = 0, λ3 = 22.0; those in the right plot are κ = 0.8,
λ1 = 1.0, λ2 = 0, λ3 = 22.0.

In the examples presented below, we further simplify the Higgs potential

by setting λ2 = 0 as the associated term does not play an important role.

It is then easy to show that the degenerate minima are obtained for

v =

(

λ1

λ3 − 22κ

)1/4

, (6.53)

so we must take λ3 > 22κ. The value of V at this minimum is

Vmin = V0 −
1

3

√

λ3
1

λ3 − 22κ
, (6.54)

and we choose V0 such that Vmin = 0 in order to produce finite energy-

densities for the domain-wall configurations.

Having understood the global minima, we may now solve the Euler-

Lagrange equations

f ′′X(w) =
∂V

∂fX
, f ′′E(w) =

∂V

∂fE
, (6.55)

using as our boundary conditions the VEVs defined by equations (6.50)

and (6.53). Numerical solutions for CoS domain-walls interpolating between

(10,+) at w = −∞ and (10′,−) at w = +∞ with two different parameter

choices are displayed in Figure 6.6.
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Figure 6.7: Non-clash-of-symmetries domain-wall solutions interpolating between
(10,+) at w = −∞ and (10,−) at w = +∞. These boundaries respect the same
SO(10)⊗U(1) subgroup, so there is no clash. The parameters used in the left plot
are κ = 0.2, λ1 = 1.5, λ2 = 0, λ3 = 22.0; those in the right plot are κ = 0.8,
λ1 = 1.0, λ2 = 0, λ3 = 22.0.

Figure 6.7 depicts non-CoS domain-wall solutions for the same param-

eter choices. The boundary conditions for such configurations are different

to the CoS scenario: the function fX is required to asymptote to zero as

|w| → ∞, while fE interpolates from v to −v. The solution has fX iden-

tically zero, and fE takes the form of the archetypal kink. This means

that the non-CoS configurations feel the large potential-energy maximum at

fX = fE = 0, shown at the centre in Figure 6.5a, while the CoS configura-

tion “skirts around” that central maximum. This immediately implies that

the CoS solutions have lower energy density than the non-CoS solutions.

Although they are in the same topological class, the CoS domain walls are

stable while the non-CoS domain walls are unstable. Figure 6.5b shows a

three-dimensional plot of the potential and where the two domain-wall con-

figurations sit with respect to the topography. There is a tall maximum

at the origin, and a corrugated valley encircling it, with four low points at

the VEVs. Figure 6.8 compares the energy densities of CoS and non-CoS

domain walls.

Let us summarise the kink solutions we have found. We were looking

for background configurations of the adjoint χ with boundary conditions

that broken E6 to differently embedded SO(10) ⊗ U(1) subgroups. As our

reference vacuum, the one at w = −∞, we used (10,+), which corresponds

to χ breaking in the direction of the diagonal generator E. For w = +∞, we

used both (10′,−) and (10,−), which correspond to breaking in the direction

of −E′ and −E respectively. We needed to interpolate from a ‘+’ vacuum
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Figure 6.8: The difference in energy densities between the non-CoS and CoS
domain wall solutions, Enon-CoS −ECoS. We have numerically scanned through the
parameter space with 0 < κ < 1 along the horizontal axis, and each successive curve
represents a different λ1, beginning at λ1 = 0.05 at the bottom and increasing in
steps of 0.05 to λ1 = 1.5 at the top. The energy difference is always positive, so
the CoS domain wall has a lower energy. We set λ2 = 0 for simplicity.

to a ‘−’ vacuum to obtain topological kinks. The first set of boundary

conditions gives a clash-of-symmetries set-up, with SU(5) ⊗ U(1)2 as the

symmetry group respected at non-asymptotic values of w, and the second

a non-clash-of-symmetries set-up, where SO(10) ⊗ U(1) is the symmetry at

all w.

Think about this in terms of the twenty-seven different linear combina-

tions of the diagonal generators T1–6 that yield just a rearranged version of

T1, as per Table 6.1. It is helpful to refer to Figure 6.2 to visualise these

twenty-seven different rearrangements, and we shall label the nth rearrange-

ment, the nth row, as T
(n)
1 , with T

(1)
1 ≡ T1. When χ assumes a VEV in the

direction of T
(n)
1 for a given n, it breaks E6 to one of the twenty-seven differ-

ently embedded SO(10)⊗U(1) subgroups. If we take T
(1)
1 as the direction of

the χ vacuum at w = −∞, then we have a choice of twenty-seven directions

for the vacuum at w = +∞, one for each of the rearranged versions of T1

(with a negative sign to get topological kinks). The kink solutions we have

been studying in this section correspond to choosing −T (12)
1 for the CoS

set-up and −T (1)
1 for the non-CoS set-up.

It is natural to inquire about the properties of the kink configurations

for the other twenty-five choices of boundary conditions at w = +∞. What
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is the common subgroup — the clash group — of the differently embed-

ded SO(10)’s that is respected at non-asymptotic values of w? What are

the relative energy densities of these different kink solutions? We have per-

formed a preliminary analysis to uncover answers to these questions. The

clash group can be easily determined by examining Figure 6.2. Using any

of the ten rearranged generators −T (2–11)
1 as the direction that χ breaks to

at w = −∞ produces kinks which have SO(8) ⊗ U(1)2 as the intersection

of the two differently embedded SO(10) ⊗ U(1) groups. The other sixteen

choices, being −T (12–27)
1 , yield SU(5) ⊗ U(1)2 as the intersection, or clash,

group. As for the relative energy densities, for the (very tiny) parameter

space that we have checked, the ten SO(8) configurations have lower energy

density than the sixteen SU(5) ones. Note that for a given set of parameters

in the Higgs potential, all ten SO(8) solutions have the same energy den-

sity, and, similarly, all sixteen SU(5) solutions have the same energy density

among themselves. The single non-CoS solution, corresponding to choosing

−T (1)
1 at w = −∞, has an energy density which is greater than all the other

configurations.15

This is a rather unpleasant outcome because it means that our SU(5)

kink solutions, as per Figure 6.6, are unstable to decay to one of the SO(8)

configurations. The instability arises from the fact that there exists an E6

transformation which is able to continuously transform the boundaries of the

SU(5) configuration to that of the SO(8) one. Such an E6 transformation

comes at only a finite energy cost, so if the kink begins in the SU(5) form,

it will eventually evolve to the more energetically favourable SO(8) form.

In Figure 6.9 we have plotted the kink profiles f1–6 for a typical SO(8)-

inducing background. To be clear, we have taken χ =
∑6

a=1 faTa, with

f1–6 in the direction of T
(1)
1 at w = −∞ and in the direction of −T (4)

1 at

w = +∞. Even though more of the fa are non-zero for this configuration

as compared with that in Figure 6.6, the internal structure of the invariants

In in the Higgs potential (6.38) is such that the associated energy density is

lower in the SO(8) case, at least for our particular choice of parameters and

15This particular analysis of the relative energy densities was performed towards the
end of the current thesis, following the discovery of the rearrangement property of T1, and
we have not had time to properly understand its consequences. The preliminary results
presented here do not appear in the associated publication (Paper 2 in the author’s list of
publications) which assumes that the SU(5) configuration, having a lower energy density
than the non-CoS kink solution, has the lowest energy density of all possible configurations.
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Figure 6.9: Clash-of-symmetries domain-wall solutions interpolating from the di-
agonal generator T1 at w = −∞ (corresponding to row 1 in Table 6.1, what we are
calling (10,+)) to the negative of the rearranged generator corresponding to row
4 in Table 6.1, at w = +∞. We must take the negative of this latter generator
to yield topological kinks. These boundary conditions break E6 to isomorphic but
differently embedded SO(10)⊗U(1) subgroups, the intersection of these particular
embeddings (their clash) being SO(8) ⊗ U(1)2, in contrast to the SU(5) ⊗ U(1)2

clash depicted in Figure 6.6. Reading from top to bottom on the far right side of
the figure, the six components of χ are f1 ≡ fE , f3, f4 (which is zero everywhere),
f5, f2 ≡ fX and f6. The parameters used in the left plot are κ = 0.2, λ1 = 1.5,
λ2 = 0, λ3 = 22.0; those in the right plot are κ = 0.8, λ1 = 1.0, λ2 = 0, λ3 = 22.0.

our particular choice for the form of the Higgs potential.

We may be able to save our SU(5) model by exploiting this last obser-

vation: a different form of the Higgs potential could result in solutions that

have the lowest energy density for the SU(5) configurations. At our disposal

are the invariants I2, (I5)
2, I6, I8, (I9)

2, I12, and their products. This gives

quite a lot of room for exploration, and there is hope that one could find

some region of parameter space for some form of the potential which al-

lows for an SU(5)-clash configuration that is energetically favoured over the

SO(8) and non-CoS configurations. The corresponding kink solutions will

be qualitatively the same as those given in Figure 6.6 because the boundary

conditions are exactly the same. For the sake of the fermion localisation

analysis performed in the following subsection, we shall assume that stable

SU(5) solutions can be found, and we shall use those solutions depicted in

Figure 6.6 as representative of the putative, stable solutions.

6.4.2 Localisation of fermion zero modes

The clash-of-symmetries E6 domain wall solutions described in Section 6.4.1

are a good starting point for the creation of domain-wall brane models
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whereby the effective four-dimensional theory is SU(5)-invariant. To ac-

tually create such a model, fermions, additional Higgs bosons and gravi-

tons have to be incorporated. In this subsection, we demonstrate that a

phenomenologically-acceptable fermion localisation pattern is obtained us-

ing the simplest possible mechanism. This is actually quite a remarkable

result, and we shall explain why. As previously pointed out, the domain-

wall configurations that we have found which yield SU(5) invariance on the

brane are unstable. However, we shall assume that one can find a suitable

Higgs potential for χ which supports appropriate, stable solutions, and we

make the following analysis under such an assumption.

There are enough degrees of freedom in the 27 of E6 for a single gener-

ation of the standard model. So this is what we begin with:

Ψ ∼ 27 . (6.56)

It is coupled to the adjoint scalar, as per

LY = −hΨχΨ , (6.57)

where h is the coupling constant. We now substitute in the background,

clash-of-symmetries domain-wall configuration for χ and solve the resulting

Dirac equations. They take the form

iΓM∂MΨ(E,X)(xµ, w) − h [fE(w)E + fX(w)X] Ψ(E,X)(xµ, w) = 0 . (6.58)

The notation Ψ(E,X) signifies the component of the 27 with the specified

(E,X) charges, as given in equation (6.30b). The various components couple

to different background field configurations,

b(E,X)(w) = fE(w)E + fX(w)X , (6.59)

given by the domain-wall configuration and the charges. This is in direct

analogy with the splitting of the fermions in the SU(5) model considered in

Chapter 5, in particular, this equation for b(E,X) mimics equation (5.17).

The five-dimensional Dirac matrices are, as usual, ΓM = (γµ,−iγ5), and

we look for separated-variable solutions Ψ(xµ, w) = F (w) ψ(xµ). As in

the analyses of previous chapters, we demand that ψ have definite chiral-
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ity, γ5ψ = ±ψ, and obeys the four-dimensional, massless Dirac equation,

iγµ∂µψ = 0. Following the analysis that lead to equation (5.18), the profiles

for the case at hand have solutions given by

F (E,X)(w) = N (E,X)e−h
R w
0 b(E,X)(w′)dw′

, (6.60)

where N is a normalisation factor. For the profile F (E,X) to represent local-

isation, it must be square-integrable with respect to w. For this to happen,

b(E,X) must pass through zero. If so, and it is an increasing function of w

(kink-like), then a left-handed zero-mode occurs for h > 0, while a right-

handed mode for h < 0. If b(E,X) passes through zero as a decreasing

function (anti-kink-like), then a left-handed zero-mode occurs for h < 0,

and a right-handed one for h > 0.

Figure 6.10 show the kink-like functions b(E,X) for the two parameter

choices we have been using as examples. Let us take h to be negative,

and we shall show that this yields an appropriate spectrum of localised

fermions. Using the notation D(12E, 4
√

15X) for the separate fermion mul-

tiplets inside the 27 (where D is the size of the multiplet in accord with

equation (6.30)), the following lists the corresponding b(E,X) functions and

states the localisation outcome. The latter is either “localised as left-handed

(LH) zero-mode” or “localised as right-handed (RH) zero-mode” or “delo-

calised”. We have

1(4, 0) :
1

3
fE localised LH , (6.61a)

5(−2, 2) :
1

2

(

1√
15
fX − 1

3
fE

)

localised RH , (6.61b)

5∗(−2,−2) : − 1

2

(

1√
15
fX +

1

3
fE

)

delocalised , (6.61c)

1(1,−5) :
1

4

(

− 5√
15
fX +

1

3
fE

)

localised LH , (6.61d)

5∗(1, 3) :
1

4

(

3√
15
fX +

1

3
fE

)

delocalised , (6.61e)

10(1,−1) :
1

4

(

− 1√
15
fX +

1

3
fE

)

localised LH . (6.61f)

The two 5∗’s are delocalised because the associated field never goes through

zero. The 5 and the 10 are localised at w = 0 with opposite chiralities

because their background fields are kink-like and anti-kink-like, respectively.
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Figure 6.10: Clash-of-symmetries fermion localising profiles interpolating between
(10,+) at w = −∞ and (10′,−) at w = +∞. These profiles correspond to the kink
backgrounds displayed in Figure 6.6. The top to bottom order of the SU(5) fermion
multiplets in the key to the right of the plots matches the order in equation (6.61).
The parameters used in the left plot are κ = 0.2, λ1 = 1.5, λ2 = 0, λ3 = 22.0; those
in the right plot are κ = 0.8, λ1 = 1.0, λ2 = 0, λ3 = 22.0.

The two singlets are localised at non-zero w values, so the overall spectrum

is “split”. Refer to Figure 6.10.

This is a remarkable outcome for two reasons. First, because the 5

is localised with right-handed chirality, it is equivalent to a left-handed-

localised 5∗. Thus the localised spectrum consists of left-handed zero-modes

in the SU(5) representation

5∗ ⊕ 10⊕ 1 ⊕ 1 . (6.62)

In other words we have one standard generation of fermions plus two sin-

glet neutrinos. Second, apart from the extra singlet, all the exotic fermions

in the 27 of E6 are delocalised and thus do not feature in the effective

four-dimensional theory on the brane. These benign outcomes depend cru-

cially on the boundary condition choice embodied by the clash-of-symmetries

domain-wall solution, including the Z2 minus sign.

There is an amusing aspect to this spectrum. It resembles a usual SO(10)

family plus an extra singlet. However, the left-handed 5∗, which is obtained

from a five-dimensional 5, and the 10 do not come from a 16 of either

SO(10) or SO(10)′.

At this point we are done with the initial analysis of our E6 model. It

is beyond the scope of this chapter, and this thesis, to search for a stable

SU(5)-inducing kink background and to construct a proper realisation of the

standard model, although such things would be of great interest to explore.
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6.5 Conclusion

We find it extremely encouraging that our attempt to construct an E6 invari-

ant domain-wall brane model has lead, with only the minimal of ingredients,

to the beginnings of a realistic set-up. Only a single background scalar field

χ, in the adjoint of E6, is required to form the domain wall, implement the

Dvali-Shifman mechanism and localise SU(5) gauge bosons, and further lo-

calise the correct fermion spectrum. Unfortunately, these promising features

of our set-up are marred by our inability to find a stable kink background

configuration, but we remain optimistic that one can find a suitable Higgs

potential which supports a stable solution.

The clash-of-symmetries played an integral role in out set-up, and we

gave a detailed exposition of it in Section 6.1. We pointed out that there

exists a general connection between the clash-of-symmetries mechanism and

the Dvali-Shifman mechanism, since, in the former case, one generically has

a smaller symmetry group “sandwiched” between two larger groups, which is

exactly the kind of configuration needed to implement Dvali-Shifman gauge-

boson localisation.

In trying to extend our SU(5) model of Chapter 5, we first looked, in

Section 6.2, at having an SO(10) invariant action, breaking to U(5) in the

bulk. Such a set-up did not lead to a phenomenologically-realistic symmetry

group on the brane, hence the need to consider the larger group E6. Before

we could attempt to construct the E6 model, we needed to first analyse the

structure of the invariants In. Section 6.3 was devoted to such a study, and

we discovered a truly remarkable “rearrangement property”: the diagonal

generators of E6 explicitly tell you the exact coefficients needed to form linear

combinations of the same generators which yield the first generator with

rearranged diagonal entries. Such a fact can be used to find all twenty-seven

embeddings of SO(10) ⊗ U(1) in E6. A full analysis of all the independent

invariants was performed, and we discussed how to engineer a Higgs potential

which exploits these differently embedded subgroups.

Section 6.4 relied on these findings and used two such embeddings, along

with their negative Z2 partners, to implement the clash-of-symmetries mech-

anism in an E6 setting. The adjoint χ broke E6 to SO(10) ⊗ U(1)E on

one side of the domain wall, and broke to SO(10)′ ⊗ U(1)E′ on the other

side; these groups are isomorphic, but embedded differently in E6. Via the
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clash-of-symmetries, the intersection of these groups, being SU(5) ⊗ U(1)2,

is the symmetry on the brane. Because the brane-localised SU(5) is con-

tained in both SO(10) and SO(10)′, which are confining groups, the gauge

bosons associated with SU(5) are localised to the domain-wall region by

the Dvali-Shifman argument. We also found kink configurations which have

SO(8)⊗U(1)2 as the symmetry on the brane, this group being the intersec-

tion of two other, differently embedded SO(10) ⊗ U(1) subgroups. For the

Higgs potential that we analysed, this set-up is the energetically favourable

one, but since it has SO(8) gauge bosons confined to the domain-wall region,

it is unsuitable for model building purposes. We hope that a different form

of the Higgs potential for χ will allow for a stable SU(5)-brane configuration.

If such a stable kink can be found, it opens up the possibility of con-

structing a grand-unified-theory dynamically localised to a brane in an in-

finite extra-dimension. As a step towards such a model, we looked at the

coupling of a five-dimensional fermion, in the 27 of E6, to the domain-wall

background. This minimal construction produced a realistic spectrum of

localised fermion zero-modes, which is a non-trivial outcome.

To complete a realistic model one needs to add gravity, in the form of

the Randall-Sundrum warped metric, which is expected to be a straight-

forward exercise. One also needs to to arrange for the additional sponta-

neous symmetry breaking cascade SU(5)⊗U(1)2 → SU(3)⊗ SU(2)⊗U(1)Y

→ SU(3) ⊗ U(1)Q. To achieve this, suitable additional Higgs multiplets

need to be introduced, and their background field configurations have to be

nonzero inside the domain wall to trigger the additional spontaneous sym-

metry breaking. This is in direct analogy with the breaking of electroweak

symmetry on the brane in the SU(5) model of Chapter 5. There, the lo-

calised electroweak doublet is arranged to have an effective four-dimensional

tachyonic mass, and a similar set-up seems feasible for the E6 model.

In constructing a realistic E6 model, it would be of great interest to find

the minimal model, minimal in the field content as well as minimal in the

number of parameters. While this is certainly a valid path to take next —

we even have all the necessary tools at our fingertips — we are not going

to attempt such E6 model building in this thesis. Instead, we shall change

tack to a direction of study that is just as important as particle physics and

model building. The next chapter rounds out this thesis by studying the

cosmology of domain-wall branes.
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Cosmology of

domain-wall branes

Now that we have dealt with the core model building and particle

physics aspects of domain-wall brane models, we move on to consider

their cosmological properties. While it is necessary to have a given model

agree with particle physics experiments, one must also take into account

early universe cosmology, as there exist direct links between this early era

and the behaviour of particles at the fundamental level. These links have

been exploited in the past decades — most notably by the measurement

of the cosmic microwave background — to provide a new window into the

inner workings of nature, and to provide extra data to confirm, or rule out,

models of cosmology and particle physics.

The domain-wall brane models that we have constructed in this thesis

are particularly vulnerable to cosmological constraints because the early uni-

verse was hot enough to probe the physics of the extra dimension. In this

chapter we show how to define a consistent domain-wall brane cosmology

that provides one with the theoretical tools necessary for analysing the mod-

ifications to standard cosmology due to a brane dynamically generated by

a scalar field. The usual Friedmann, Lemâıtre, Robertson-Walker (FLRW)

metric (see Section 1.4 for a review) is recovered in the region of the brane,

but, remarkably, with an effective scale factor aeff(t) that depends on par-

ticle energy and on particle species. As a consequence, domain-wall brane

models generically predict a breakdown of the weak equivalence principle on

sufficiently small scales. This unusual effect comes from the extended na-

211
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ture of particles confined to a domain-wall brane — their extra-dimensional

profiles have non-zero width — and the fact that they feel an “average” of

the bulk spacetime. We demonstrate how to recover the standard results of

fundamental brane cosmology in the infinitely-thin domain-wall limit, and

comment on how our results have the potential to place bounds on param-

eters such as the thickness of domain-wall branes.

As discussed in Section 1.5, the cosmology of brane-world models where

the brane is an infinitely-thin, fundamental entity has a history which is en-

twined with the discovery of the Randall-Sundrum warped metric. The main

outcome of such studies was the deviation of brane-world cosmology from the

standard cosmology at temperatures above a particular normalcy tempera-

ture. See the initial series of papers [93, 101, 102, 105], and also [103, 106].

More in line with the topic of the current thesis, the cosmology of thick

fundamental branes has also been analysed [104, 121]. Here, the underlying

nature of a fundamental brane was generically modelled as a small but finite

width, and effective four-dimensional quantities were obtained by averaging

their corresponding five-dimensional quantities over the width of the brane.

This produced corrections to the cosmology of the infinitely-thin brane. For

the case at hand, where the brane is modelled by a scalar field, this av-

eraging procedure yields, heuristically, a weighted average. The effective

four-dimensional scale factor for a given field is computed by “averaging”

the five-dimensional metric components, with a weight given by the extra-

dimensional profile of the associated field. As we shall see, this leads to some

interesting and unexpected features.

The structure of this chapter is as follows. In Section 7.1 we review the

relevant points of fundamental brane cosmology, where the FLRW metric

ansatz is extended to five-dimensions and the corrections to the usual Fried-

mann equation are derived. We then discuss in Section 7.2 how one can de-

fine a sensible cosmological metric for a dynamically generated domain-wall

brane. This is followed by the derivation of the effective, four-dimensional

cosmological metrics that are experienced by confined scalar and fermion

fields. The effective scale factor can be identified from such a metric. In

Section 7.3 we verify that our results reproduce those of fundamental-brane

cosmology in the thin wall limit, and we then conclude in Section 7.4.
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7.1 Fundamental-brane cosmology

In this section we summarise previous results for the cosmological evolution

of a fundamental brane with localised sources (see [93, 101, 105] for details,

and [231] for an extension to higher codimension). The idea is to take

a five-dimensional bulk spacetime, include brane, bulk and brane-localised

stress-energy sources, and solve the five-dimensional Einstein equations. The

brane is considered to be a fundamental object and is modelled by a delta

distribution, with the total action being

S =

∫

d5x
√−g M3

∗ (R− 2Λ) +

∫

d5x
√−gbrane δ(w)Lbrane , (7.1)

where M∗ is the five-dimensional gravitational mass scale, Λ is the bulk

cosmological constant and g and gbrane are the determinants of the metric in

the bulk and on the brane respectively. The delta-function localises Lbrane

to the brane, which includes the brane tension and standard model fields.

In this chapter we are using the space-like metric of Section A.3.

Since we are interested in cosmological solutions, we consider sources

that are homogeneous and isotropic in the three spatial dimensions. The

most general metric consistent with these symmetries is

ds25 = −n2(t, w)dt2 + a2(t, w)γijdx
idxj + b2(t, w)dw2 , (7.2)

where i, j run over the three spatial dimensions, and γij is the metric of the

three-space, which may be positively curved, flat or negatively curved. Note

that it is possible to make a change of coordinates of the t-w subspace so

as to reduce the two metric functions n and b to a single function, say n̂,

to obtain the sub-line-element n̂(t̂, ŵ)(−dt̂2 + dŵ2). This is not a useful set

of coordinates to use for the problem at hand, so we stick with our original

ansatz.

Einstein’s equations are

GMN ≡ RMN − 1

2
gMNR =

1

2M3
∗

TMN − gMNΛ , (7.3)

where M,N are five-dimensional indices. The brane tension and brane-

localised sources are represented jointly by the four-dimensional density ρb
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and pressure pb and appear in the stress-energy tensor as

TMN = δ(by) diag(−ρb, pb, pb, pb, 0) . (7.4)

For the case of the metric ansatz given by equation (7.2), the non-zero

components of the Einstein tensor read

G00 = 3

[

ȧ

a

(

ȧ

a
+
ḃ

b

)

− n2

b2

(

a′′

a
+
a′

a

(

a′

a
− b′

b

))

]

, (7.5a)

Gij = γij
a2

b2

[

a′

a

(

a′

a
+ 2

n′

n

)

− b′

b

(

n′

n
+ 2

a′

a

)

+ 2
a′′

a
+
n′′

n

]

+ γij
a2

n2

[

ȧ

a

(

− ȧ
a

+ 2
ṅ

n

)

− 2
ä

a
+
ḃ

b

(

−2
ȧ

a
+
ṅ

n

)

− b̈

b

]

, (7.5b)

G05 = 3

(

n′

n

ȧ

a
+
a′

a

ḃ

b
− ȧ′

a

)

, (7.5c)

G55 = 3

[

a′

a

(

a′

a
+
n′

n

)

− b2

n2

(

ȧ

a

(

ȧ

a
− ṅ

n

)

+
ä

a

)]

. (7.5d)

Here, the indices 0 and 5 correspond to t and w respectively, a dot denotes

a derivative with respect to t, and a prime with respect to w.

For general values of Λ, ρb and pb, Einstein’s equations will yield time-

dependent solutions, corresponding, for example, to an expanding spacetime

on the brane. Before exploring such solutions, we note that it is possible

to fine tune the sources to produce a time-independent background. This

corresponds exactly to the scenario of Randall and Sundrum [94, 95] who

demonstrated that gravity is localised to a fundamental brane tuned in such

a way.

The specific choice necessary is that the brane source be pure tension

(corresponding to a four-dimensional cosmological constant) ρb = −pb = σ,

tuned against the bulk cosmological constant according to

σ =
√

−24M6
∗Λ . (7.6)

Note that this implies that the bulk geometry must be five-dimensional

Anti-de Sitter space AdS5, with Λ < 0. The corresponding metric solution

is then

ds25 = e−2µ|w|(−dt2 + γijdx
idxj) + dw2 , (7.7)
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where

µ ≡
√

−Λ

6
=

σ

12M3
∗

. (7.8)

Moving back to the general time-dependent case, one solves the five-

dimensional version of Einstein’s equations by imposing the Israel matching

conditions — calculating the discontinuities in the derivatives of the met-

ric components across w = 0, and relating these to the delta-distribution

sources (see [93]). It turns out that the behaviours of ρb, pb and the metric

components evaluated at w = 0 are independent of the metric solutions in

the bulk, and obey

ρ̇b + 3H0(ρb + pb) = 0 , (7.9a)

H2
0 =

ρ2
b

144M6
∗

+
Λ

6
− k

a2
0

+
C
a4

0

, (7.9b)

where the parameter k takes values +1, 0,−1 according to whether the met-

ric γij describes positively-curved, flat, or negatively-curved spatial three-

sections. Time has been rescaled such that n0(t) ≡ n(t, w = 0) = 1. The

integration constant C represents an effective radiation term, or so-called

“dark radiation” (see [105] for bounds on this term from nucleosynthesis),

and for simplicity we set C = 0 from now on.

The effective four-dimensional scale factor a0 is the five-dimensional met-

ric component a(t, w) evaluated on the brane a0(t) ≡ a(t, w = 0) and H0 is

the corresponding Hubble parameter. Equation (7.9a) describes the usual

four-dimensional conservation of energy on the brane (the continuity equa-

tion) and equation (7.9b) is the modified Friedmann equation. Due to the

proportionality H0 ∼ ρb instead of the usual H0 ∼ √
ρb, this Friedmann

equation seems at odds with observation. The clue to fixing this problem

comes from considering the time-independent Randall-Sundrum solution,

where the brane tension contributed an energy that exactly cancelled the

bulk cosmological constant. Guided by this, one writes the total brane

source ρb, pb as a sum of a background brane tension σ and some other

general brane source ρ, p; namely

ρb = σ + ρ , (7.10)

pb = −σ + p , (7.11)
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where σ is defined as in (7.6). The effective Friedmann equation for a0 now

reads

H2
0 =

σ

72M6
∗

ρ+
1

144M6
∗

ρ2 − k

a2
0

. (7.12)

If we assume ρ is small compared to σ, then the ρ2 term gives small correc-

tions to the usual behaviour and the evolution of a0 is driven to first order by

ρ, with the proportionality constant playing the role of the effective Planck

mass via

M2
Pl ≡

12M6
∗

σ
=

6M3
∗√

−6Λ
. (7.13)

An important feature of cosmology in codimension-one brane-worlds is

that this entire analysis is independent of the behaviour of the metric com-

ponents in the bulk. Nevertheless, it is possible to find bulk solutions, and

since we will make use of them in a later section we provide them here. For

C = 0 they read [105, 122]

n(t, w) = e−µ|w| − ǫ̃ sinh(µ|w|) , (7.14a)

a(t, w) = a0(t)[e
−µ|w| − ǫ sinh(µ|w|)] , (7.14b)

b(t, w) = 1 , (7.14c)

with µ defined as in (7.8) and

ǫ ≡ ρ

σ
, (7.15a)

ǫ̃ ≡ ǫ+
ǫ̇

H0
. (7.15b)

Note that for ǫ = 0 and k = 0 we recover the RS warped-metric solution

given by equation (7.7).

The parameter ǫ measures the energy density in matter and radiation,

relative to the tension of the brane. In terms of this parameter, the Fried-

mann equation (7.12) is

H2
0 =

1

6M2
Pl

(

1 +
ǫ

2

)

ρ− k

a2
0

, (7.16)

demonstrating that ǫ ≪ 1 is required to recover conventional cosmology.

The earliest direct evidence for our standard cosmological evolution is pro-

vided by primordial (big bang) nucleosynthesis (BBN), which takes place
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at temperatures of order an MeV. Therefore, we are safe from cosmological

constraints if we choose σ ≫ (1MeV)4.

Finally, we briefly discuss the extension of these results to fundamen-

tal branes with finite thickness [104, 121]. In these scenarios the brane

and brane-localised sources are modelled as stress-energies distributed over

the finite thickness of the brane. The effective four-dimensional quanti-

ties, such as the scale factor, energy density and pressure, are defined to

be the spatial average, over the extent of the brane in the extra dimen-

sion, of their corresponding five-dimensional quantities. One then rewrites

Einstein’s equations in terms of these averaged quantities and identifies cor-

rections to the infinitely-thin brane scenario. This averaging prescription is

an important first step in understanding cosmology away from the infinitely-

thin brane limit. However, a more complete treatment is essential, since,

for example, in the Minkowski domain-wall set-up, one needs to expand the

five-dimensional fields in KK modes and integrate over the full extent of the

extra dimension. The rest of this chapter is devoted to the development of

a more complete averaging framework, within which it is possible to analyse

the cosmology of domain-wall brane scenarios.

7.2 The extension to a domain-wall brane

Our main goal in this chapter is to extend the analysis of the previous

section to the case in which the brane is topological defect – a domain

wall generated by a scalar field. The central problem is how to identify the

effective four-dimensional scale factor (the analogue of a0) and the equations

that describe its time evolution. As we shall see, this question turns out

to have an interesting and nontrivial resolution, which may have specific

implications for the signatures of such field-theoretic brane-worlds.

As exemplified in Chapter 4, the creation of a domain-wall brane cou-

pled to gravity is quite straightforward, and we shall follow closely the con-

struction from said chapter. Beginning with a scalar field χ and a suitable

potential, boundary conditions are chosen so that χ develops a kink-like pro-

file, which can be thought of as a w-dependent vacuum expectation value.

As w → ±∞, the value of χ approaches vacuum and its energy density

rapidly approaches zero. However, due to the topology of the vacuum (in

general a discrete symmetry is required), a domain wall forms around w = 0.
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The combination of gradient and vacuum energy in the core of this object

plays an analogous role to the brane tension σ in the fundamental case of

the previous section. The shape of the distribution of stress-energy due to

the w-dependent profile of χ is a smooth version of the fundamental delta-

function brane. In the non-cosmological case, that is when one seeks the

Minkowski metric on the brane, the solution for the metric then yields a

correspondingly smooth version of the e−µ|w| warp factor in (7.7).

Because this domain-wall brane is extended in the extra-dimension w,

any fields that were previously brane-localised by the delta function are no

longer strictly located at w = 0. Rather, such fields (typically the standard

model fields) must first be written as full five-dimensional fields, which are

coupled to χ in such a way as to produce a Kaluza-Klein tower of four-

dimensional fields on the domain wall. Such a procedure was detailed in

Chapter 3 for the case of a Minkowski brane. We saw there that the ground

state profile of the four-dimensional tower has a Gaussian like shape which,

when squared,1 reduces to a delta-distribution in the limit of an infinitely-

thin domain wall.

Here we are interested in the more general cosmological case. Our objec-

tive is to understand the effective four-dimensional metric on such a domain-

wall brane and how the localised fields propagate in that spacetime. In the

fundamental-brane case, four-dimensional fields are located at exactly w = 0

and have no w degrees of freedom. The four-dimensional metric they feel

is thus just the five-dimensional metric evaluated at w = 0, and for the RS

metric (7.7) this slice is just four-dimensional Minkowski spacetime. For the

cosmological metric (7.2) the slice at w = 0 has the form

ds2 = −n2(t, w = 0)dt2 + a2(t, w = 0)γijdx
idxj . (7.17)

By scaling t such that n(t, w = 0) = 1, it is clear that the effective four-

dimensional metric is of the FLRW form, with the effective scale factor de-

fined by aeff(t) = a0(t) ≡ a(t, w = 0). The solutions to the five-dimensional

Einstein equations given in the previous section then describe how aeff

evolves, and hence describe the spacetime in which the localised fields propa-

gate. In this fundamental-brane scenario, each field has the same time (with

the same normalisation) and feels the same scale factor, and so it is sensi-

1The squaring of the extra-dimensional profile comes from the normalisation of the
kinetic term, which is quadratic in the field, hence quadratic in the profile.
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Figure 7.1: A schematic representation of “dimensional parallax” for a species
of particle with extra-dimensional profile fsp(t, w). The four-dimensional parti-
cle associated with this profile experiences a weighted average of the scale factor
a(t, w), the latter of which depends on the extra-dimension w. Different species
will generally have different profiles, and thus feel a different effective scale factor.

ble to say that the effective four-dimensional metric is unique and defined

by (7.17).

For the domain-wall brane scenario things are quite different and, as we

demonstrate explicitly below, we are led to abandon the question “what is

the effective scale factor on the brane?”, and allow that different fields may

propagate in different spacetimes. The essential reason for this comes from

the extended nature of the profiles, as the associated fields are now sensitive

to the metric around w = 0, not just the slice exactly at w = 0. Since the

cosmological evolution of the slices in the vicinity of the brane are misaligned

(they expand at different rates), there is a kind of “dimensional parallax”

effect, whereby different species of particle are subject to a different aver-

aging (they have a different perspective) of the slices. Figure 7.1 displays a

schematic representation of this effect for a generic extra-dimensional pro-

file fsp(t, w). We shall explain in the following subsection why such a profile

depends on time.

Note that for the Minkowski domain-wall brane with a smoothed-out

version of the RS metric (7.7), things are much simpler because each four-

dimensional slice is proportional to Minkowski spacetime. Therefore, the

Minkowski part essentially factorises out of the averaging integral and each

field feels the same spacetime.
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The analysis in Section 7.1 determined the effective scale factor a0 in

the case of a general brane-localised source parameterised by ρ and p. For

the domain-wall brane scenario, we need to look at the sources from the

more fundamental level of classical fields. The general strategy is to identify

the kinetic term in the action for the relevant field, integrate out the extra

dimension w, and then to match the resulting four-dimensional effective

action to the canonical four-dimensional action for such a field in an FLRW

background.

7.2.1 A localised scalar field

We begin by considering a scalar field, turning to fermions in the next sub-

section. We take the five-dimensional metric given by equation (7.2) and a

five-dimensional scalar field Φ(t, xi, w) separated, for reasons we shall expand

on below, as Φ(t, xi, w) = f(t, w)φ(t, xi). The objective is to determine the

effective four-dimensional spacetime on which the relevant four-dimensional

field φ propagates.

The action for a five-dimensional scalar Φ(t, xi, w) with metric gMN is

S5 =

∫

d5x
√
g

[

−1

2
gMN∂MΦ∂NΦ − U(Φ)

]

, (7.18)

where the potential U may contain couplings of Φ to the domain-wall field

(to localise Φ) or couplings to other fields. Using the metric ansatz (7.2) we

then obtain

S5 =

∫

d5x na3b
√
γ ×

[

−1

2

(

− n−2Φ̇2 + a−2γij∂iΦ ∂jΦ + b−2(∂wΦ)2
)

− U(Φ)

]

. (7.19)

By analogy with the flat case, our first instinct might be to separate

variables by writing Φ(t, xi, w) =
∑

n fn(t, w)πn(x
i). However, in the case

of a time-dependent metric such an expansion makes it difficult to identify

a four-dimensional scalar field, since the time dependence of, for example, a

four-dimensional plane wave, is consumed by the profile fn, and π becomes

merely a static spatial wave. The next obvious suggestion is to instead

write Φ(t, xi, w) =
∑

n fn(w)φn(t, x
i), so that φn can be identified as a four-

dimensional Kaluza-Klein mode with extra-dimensional profile fn. Here
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however, we encounter a different problem, namely that the time variation

of the metric components implies that the extra-dimensional profile will in

general change with time.

We overcome these obstacles by noting that there are really two time

scales in the problem: the cosmological time scale of the evolution of the

background metric, and the time scale associated with particle physics pro-

cesses. With this in mind, we consider the following separation of variables

Φ(t, xi, w) =
∑

n

fn(t, w)φn(t, x
i) . (7.20)

The possible ambiguity in the time dependence (whether it appears in fn

or φn) is resolved by the requirement that φn satisfies the four-dimensional

Euler-Lagrange equation, which shall be specified below. In order for φn to

be identified as a propagating four-dimensional field, it must also carry the

majority of the time dependence, hence we impose the condition ḟn/fn ≪
φ̇n/φn. These requirements formally identify the class of solutions for fn

that we are allowing.

One should consider this prescription a separation of scales, rather than

a strict separation of variables. Quantitatively, φ̇n/φn ∼ E where E is the

energy of the particle, and ḟn/fn ∼ H where H is the Hubble constant. In

natural units we have H ∼ 10−32eV, which is tiny compared to the typical

energy of a particle. In what follows, we therefore neglect all time derivatives

of fn and of the metric components n, a and b, since they are much smaller

than the other terms in the action.

From now on we focus on a single mode of the KK tower and drop

the subscript n. Then, with the prescription (7.20) and the assumptions

regarding small time-derivatives, the action (7.19) becomes

S5 =

∫

d4x
√
γ

∫

dw ×
[

−1

2

(

−a
3b

n
f2φ̇2 + nabf2γij∂iφ∂jφ+

na3

b
f ′2φ2

)

− na3bU

]

. (7.21)

The third term, proportional to φ2, will contribute to the potential U . Inte-

grating over the extra-dimension yields the four-dimensional effective action

S4 =

∫

d4x
√
γ

[

−1

2

(

−F (t)φ̇2 +G(t)γij∂iφ∂jφ
)

+ . . .

]

, (7.22)
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where we have written only the kinetic terms explicitly, and defined

F (t) ≡
∫

f2a
3b

n
dw , G(t) ≡

∫

f2nab dw . (7.23)

The action (7.22) is almost what we are looking for, but what remains is

to correctly identify the four-dimensional line element describing the space-

time within which φ propagates. To do this, we match to the prototype line

element

ds24 = −T 2(t)dt2 +X2(t)γijdx
idxj , (7.24)

and the corresponding prototype action

S(proto)
4 =

∫

d4x T (t)X3(t)
√
γ

[

−1

2

(

−T−2(t)φ̇2 +X−2(t)γij∂iφ∂jφ
)

]

.

(7.25)

Here, we are again just focusing on the kinetic and gradient terms. Matching

the effective action (7.22) with the four-dimensional prototype (7.25) we then

obtain

F (t) = T−1(t)X3(t) , G(t) = T (t)X(t) . (7.26)

Solving for T (t) and X(t) gives

T (t) = F−1/4(t)G3/4(t) =

(∫

f2a
3b

n
dw

)−1/4(∫

f2nab dw

)3/4

, (7.27a)

X(t) = F 1/4(t)G1/4(t) =

(
∫

f2a
3b

n
dw

)1/4(∫

f2nab dw

)1/4

. (7.27b)

The time-dependent functions T (t) and X(t) define, along with (7.24),

the effective four-dimensional line element followed by the field φ. As we

shall soon demonstrate, we are free to rescale f by an arbitrary (slowly

varying) function of time, and we can use this freedom to fix T = 1. This

corresponds to choosing a canonical time coordinate. The scale factor for φ

is then precisely

aφ(t) = X(t) . (7.28)

Notice that the temporal behaviour of X(t) (and hence aφ) is inherited from

the time-dependence of the metric components and possibly f(t, w), all of

which are taken to be slowly varying.
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This result for the effective scale factor immediately raises two impor-

tant points. The first is that scalar modes with different profile functions

will have different definitions of the scale factor aφ. Thus, it is not possi-

ble to define a unique scale factor for this four-dimensional effective theory.

Instead, each four-dimensional scalar field, whether it arises from a differ-

ent five-dimensional field, or is merely a different KK mode of the same

five-dimensional field, propagates according to a different effective four-

dimensional metric.

The second interesting point is that the procedure above will yield a

different result for a fermionic field (and also other spin fields) due to the

difference arising from the spin connection in the kinetic term. We will follow

this point up in the next section where we explicitly perform the relevant

calculation for a fermion.

As a consistency check, we consider equation (7.27) in the limit of an

infinitely-thin domain wall. In such a limit, the square of a typical ground

state profile f becomes proportional to a delta-function distribution: f2 →
δ(bw). This comes from the kinetic term for φ, which is quadratic in f ,

and must be normalised such that, in the thin brane limit, ∫ f2d(bw) = 1.

The integrals for T (t) and X(t) can then be performed analytically yielding

T (t) = n(t, w = 0) and X(t) = a(t, w = 0). These coincide with the

fundamental brane case, in which the four-dimensional metric is the five-

dimensional metric evaluated on the brane.

A further check on our derivation can be made by looking at the sepa-

rable (but less general) version of the cosmological metric, given by

ds25 = c2(w)[−dt2 + â2(t)γijdx
idxj ] + b̂2(w)dw2 . (7.29)

This ansatz allows for AdS4 and dS4 brane solutions, as detailed in [118, 108,

165, 175, 232, 112, 211, 182]. The effective four-dimensional metric for φ

then has T (t) = (∫ f2c2b̂ dw)1/2 and X(t) = â(t)(∫ f2c2b̂ dw)1/2. Note that

T is constant (f will be time-independent; see later) and we can normalise

f to make T = 1, and then find that X(t) = â(t). In this case we again

recover the known result, namely that all fields on the brane feel the same

metric.

To complete this formal analysis of Φ we determine the differential equa-

tion satisfied by the profile function f(t, w). Our definitions above for the
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separation of scales ensure that φ behaves as a four-dimensional scalar field

in a spacetime characterised by T (t) and X(t). This means that φ will

satisfy the Euler-Lagrange equation

− 1

T 2
φ̈+

1

X2
γij
(

∂i∂jφ− Γ
(3) k

ij∂kφ
)

= m2φ , (7.30)

where Γ
(3) k

ij are the connection coefficients associated with the 3-space met-

ric γij and m is the effective four-dimensional mass of φ. The parenthesised

term on the left hand side is simply the double covariant-derivative of φ with

respect to γij . Note that we are ignoring time derivatives of T (t) and X(t),

which are much smaller that the derivatives of φ.

Now consider the five-dimensional Euler-Lagrange equation for Φ:

gMN
(

∂M∂NΦ − Γ
(5)P

MN∂PΦ
)

=
∂U

∂Φ
, (7.31)

where Γ
(5)P

MN are the five-dimensional connection coefficients. We first sep-

arate variables, neglect time derivatives of n, a, b and f , and use equa-

tion (7.30) to eliminate the spatial derivatives of φ (thus the four-dimensional

mass will appear). We then linearise the equation, yielding

[

f ′′ +

(

n′

n
+

3a′

a
− b′

b

)

f ′ + b2
(

m2X
2

a2
− U (1)

)

f

]

φ

+
b2

a2

(

X2

T 2
− a2

n2

)

fφ̈ = 0 , (7.32)

where U (1) is defined by ∂U/∂Φ = U (1)Φ+O(Φ2). Notice the appearance of

the φ̈ term, which is absent when we specialise to Minkowski spacetime on

the brane. There are two reasons for this. First, there is a mismatch between

the five-dimensional ratio of the time and three-space metric factors, and

the corresponding effective four-dimensional ratio; a2/n2 6= X2/T 2. For a

Minkowski brane these ratios are equal because each four-dimensional slice of

the five-dimensional metric is proportional to Minkowski spacetime. Second,

we have employed a separation of scales rather than the usual separation of

variables (which did not work in this setting). This φ̈ term then quantifies

the inability of the domain-wall brane to localise proper four-dimensional

effective fields, at least in a cosmological background.

To proceed, we need to eliminate the φ and φ̈ factors so that we have an
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equation that can, at least in principle, be used to solve for f . To this end

we solve the four-dimensional Euler-Lagrange equation (7.30) (in flat space;

k = 0) and find “plane waves” of the form

φ(t, xi) ∝ exp(−iT 2Et+ iX2γijp
ixj) , (7.33)

where E is the energy of the wave, pi is its momentum, and T 2E2 =

X2γijp
ipj +m2. Then φ̈ = −E2T 4φ, and equation (7.32) becomes

f ′′ +

(

n′

n
+

3a′

a
− b′

b

)

f ′ + b2
[

m2X
2

a2
− U (1) − E2T 4

a2

(

X2

T 2
− a2

n2

)]

f = 0 .

(7.34)

Usually, such an equation depends only on m, implying that although dif-

ferent masses in the KK tower of four-dimensional fields (φ0, φ1, etc.) have

different profiles, these profiles are independent of the energy. Here, how-

ever, the equation also depends on E, so that quanta with the same mass

but different energies (or momenta) have different profiles. On the surface,

equation (7.34) looks linear and homogeneous in f , but it is in fact a non-

linear, integro-differential equation, since both T (t) and X(t) are defined in

terms of f . Nevertheless, this equation still has the property that f can be

rescaled by a w-independent factor, so long as the eigenvalues m and E are

also appropriately rescaled to compensate for the change in T (t) and X(t).

In fact, since ḟ ≪ E, as discussed previously, we may even take this factor

to have a (mild) time-dependence. As we advertised earlier, the rescaling

of f can be used to choose a canonical time coordinate, corresponding to

fixing T = 1, which is achievable precisely because T (t) depends on f .

As a check on our derivation, for the separable cosmological metric (7.29)

the factor X2/T 2 − a2/n2 vanishes, and equation (7.34) simplifies to the

known result (compare with equation (4.32))

f ′′ +

(

4c′

c
− b̂′

b̂

)

f ′ + b̂2
[

m2 1

c2
− U (1)

]

f = 0 . (7.35)

Note the lack of time dependence, implying that f is a function of w only.

The profile also no longer depends on the energy of the mode, just its mass,

as usual.

Let us summarise our results for scalar fields. Given a five-dimensional

background metric, described by the functions n(t, w), a(t, w), b(t, w), and
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a generic coupling potential U(Φ), we may solve equation (7.34) for f(t, w).

The particular solution depends on a mass eigenvalue m and an energy E.

We may then use this solution f(t, w) to determine T (t) and X(t) through

equation (7.27). What results is the four-dimensional spacetime, described

by T (t) and X(t), on which a four-dimensional quantum field φ with mass m

and energy E propagates. We are free to rescale f(t, w) to impose T = 1, so

that X(t) can then be interpreted as the effective FLRW scale factor. The

crucial result to note is that the scale factor depends on the type of field, its

coupling potential, and its four-dimensional mass and momentum.

7.2.2 Localised fermions

We now turn to fermions, and perform an analogous calculation to determine

the effective scale factor describing the four-dimensional spacetime on which

a localised fermion field propagates.

For a five-dimensional fermion Ψ(t, xi, w) the action is

S5,Ψ =

∫

d5x
√
g
[

ΨΓAE M
A (∂M + ωM )Ψ − UΨΨΨ

]

, (7.36)

where ΓA are the five-dimensional flat-space gamma matrices, E M
A are

the vielbeins and ωM is the spin connection.2 The gamma-matrices obey

{ΓA,ΓB} = 2ηAB , with ηAB = diag(−1, 1, 1, 1, 1). The coefficient UΨ of the

mass term will in general be a function of other fields, to allow, for example,

coupling of the fermion to the domain wall.

As for a scalar field, we perform a separation of scales in time and sep-

aration of variables in space,3

Ψ(t, xi, w) = u(t, w) ψ(t, xi) , (7.37)

and expand the kinetic terms, ignoring u̇. The action becomes

S5,Ψ =

∫

d4x

∫

dw na3b
√
γ
[

u2 ψ
(

−n−1γ0ψ̇ + a−1γae j
a ∂jψ

)

+ . . .
]

,

(7.38)

where γ0, γa are the four-dimensional, flat-space gamma matrices defined by

2We are using A, B to denote five-dimensional flat-space indices and M , N to denote
five-dimensional curved-space indices. See Section A.4.

3There is a subtlety here: we are assuming that all four components of the Dirac spinor
ψ have the same profile u, which may not be warranted. We expand on this later.
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{γα, γβ} = 2ηαβ , and e j
a are vielbeins for the three-dimensional space, with

γij the metric.4 As before, we require that the correct powers of n(t, w),

a(t, w) and b(t, w) match with the relevant terms in the prototype four-

dimensional fermion action

S(proto)
4,ψ =

∫

d4x Tψ(t)X3
ψ(t)

√
γ ψ

(

−T−1
ψ (t)γ0ψ̇ +X−1

ψ (t)γae j
a ∂jψ

)

,

(7.39)

where we have used the prototype line element

ds24 = −T 2
ψ(t)dt2 +X2

ψ(t)γijdx
idxj . (7.40)

Matching the coefficients of the kinetic and gradient terms yields

Fψ(t) =

∫

u2a3b dw = X3
ψ(t) , (7.41a)

Gψ(t) =

∫

u2na2b dw = Tψ(t)X2
ψ(t) , (7.41b)

which may be inverted to give

Tψ(t) = F
−2/3
ψ (t)Gψ(t) =

(∫

u2a3b dw

)−2/3(∫

u2na2b dw

)

, (7.42a)

Xψ(t) = F
1/3
ψ (t) =

(
∫

u2a3b dw

)1/3

. (7.42b)

These results are similar to the scalar case. As there, we can rescale

u(t, w) by a slowly varying function of time to enforce Tψ = 1, so that

ψ describes a four-dimensional fermion field in a spacetime with effective

scale factor aψ(t) = X(t). Again, the definition of the effective scale factor

depends on the profile of the particular KK mode ψ that one is interested

in. As before, in the infinitely-thin domain-wall limit u2 → δ(bw) and

Tψ(t) → n(t, w = 0), Xψ(t) → a(t, w = 0), which recovers the known delta-

function brane result. For the separable cosmological metric (7.29), Tψ is a

constant and, after normalising u such that Tψ = 1, we have Xψ(t) = â(t);

the standard result.

To identify the equation satisfied by u(t, w), we impose the requirement

that ψ satisfies the four-dimensional Euler-Lagrange equation with mass

4α, β = 0, 1, 2, 3 are the four-dimensional, flat-spacetime indices, while a = 1, 2, 3 is a
three-dimensional flat-space index.



228 Chapter 7. Cosmology of domain-wall branes

mψ and use this to eliminate the spatial derivatives of ψ from the five-

dimensional Euler-Lagrange equation for Ψ. This yields

[

u′ +

(

n′

2n
+

3a′

2a

)

u

]

γ5ψ+ b

(

mψ
X

a
− UΨ

)

uψ− b

a

(

Xψ

Tψ
− a

n

)

uγ0ψ̇ = 0 ,

(7.43)

where γ5 = iγ0γ1γ2γ3. This has a similar structure to the scalar ver-

sion (7.32); in particular, the ψ̇ term quantifies the deviation from ψ being

a four-dimensional field in the usual, infinitely-thin brane definition.

The appearance of γ0 and γ5 in equation (7.43) means localised states

on the domain wall have an unusual Dirac structure. In the Minkowski-

brane case, the γ0φ̇ term is absent and this leads to the localisation of chiral

states, which are eigenspinors of γ5. With the presence of γ0, one would

näıvely seek Dirac states which are eigenspinors of both γ0 and γ5, which is

impossible! It therefore seems that the time-dependent background metric

leads to unconventionally localised spinor states.

To understand this problem more deeply, consider seeking solutions to

equation (7.43) when ψ = ψL (and u = uL) is left-chiral; that is, γ5ψL =

−ψL and mψL
= 0. Using a plane wave solution for ψL and expanding its

Weyl components in order to evaluate γ0ψ̇L, we obtain two independent

equations for uL:

u′L +

(

n′

2n
+

3a′

2a

)

uL + bUΨuL = 0 , (7.44a)

b

a

(

XψL

TψL

− a

n

)

uLEψL
T 2
ψL

= 0 , (7.44b)

where EψL
is the energy of the chiral plane-wave spinor ψL. With a non-

trivial background, the only solution to equation (7.44b) is uL = 0. Thus

there are no localised left-chiral spinors. It may be possible to rectify this

problem and find localised states which have a certain definite spinor struc-

ture by relaxing the separation ansatz. Recall that each component of the

Dirac spinor was assumed to have the same profile u, as per equation (7.37),

which may be an overly strict assumption. The resolution of this problem

is left for the future.
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7.2.3 The effective Newton’s constant

We shall now briefly discuss how to determine the effective Planck mass, and

hence Newton’s constant, describing the strength of gravity on the brane.5

Usually, one expands the five-dimensional Ricci scalar in the Einstein-Hilbert

action in terms of its four-dimensional counterpart, and the numerical pre-

factor is identified as the Planck mass. For example, in the RS2 model one

uses the metric

ds25 = e−2µ|w|g(4)
µν (xµ)dxµdxν + dw2 , (7.45)

for which the Einstein-Hilbert action can be written as

SEH =

∫

d4x

∫

dw
√−g M3

∗R (7.46a)

⊃
∫

d4x

∫

dw e−4µ|w|
√

−g(4) M3
∗ e

2µ|w|R(4) , (7.46b)

where R(4) is the four-dimensional Ricci scalar associated with g
(4)
µν . One

then identifies the effective four-dimensional Planck mass as

M2
Pl ≡M3

∗

∫ ∞

−∞
e−2µ|w|dw =

M3
∗

µ
, (7.47)

which agrees with the result obtained from the effective Friedmann equation

in the fundamental brane scenario, equation (7.13).

Following this approach for domain-wall cosmology, we begin by con-

sidering how the four-dimensional Ricci scalar is embedded in the five-

dimensional one. However, there is a problem with this approach, because

the metric factors for t and xi behave differently at the five-dimensional

level, and so the five-dimensional Ricci scalar does not separate into a four-

dimensional piece plus other terms. To make progress, one might consider

restricting attention to the three-dimensional Ricci scalar (constructed from

the three-dimensional spatial metric γij), which does separate, and identi-

fying its pre-factor in the Einstein-Hilbert action as the Planck mass. In

other words, we consider just the three spatial components of the metric

perturbations to determine the gravitational coupling, instead of using the

temporal and spatial components together.

5We are concerned here with the definition of the Planck mass for use in cosmological
situations, such as in equation (7.16), as opposed to its use in Cavendish-like experiments.
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Explicitly, we first write the five-dimensional metric in the general form

ds25 = −n2(t, w)dt2 + a2(t, w)ξij(t, x
i)dxidxj + b2(t, w)dw2 . (7.48)

The five-dimensional Einstein-Hilbert action can then be expanded as

SEH =

∫

d4x

∫

dw
√−g M3

∗R (7.49a)

⊃
∫

d4x

∫

dw na3b
√

ξ M3
∗ a

−2R(3) , (7.49b)

where R(3) is the Ricci scalar constructed from ξij. The goal is to match

this to the four-dimensional prototype Einstein-Hilbert action associated

with the general prototype metric

ds24 = −T 2
M (t)dt2 +X2

M (t)ξij(t, x
i)dxidxj , (7.50)

which yields

S(proto)
EH =

∫

d4x

√

−g(4) M2
PlR

(4) (7.51a)

⊃
∫

d4x TM (t)X3
M (t)

√

ξ M2
Pl X

−2
M (t)R(3) . (7.51b)

By comparing equations (7.49b) and (7.51b), we can infer that the five-

dimensional theory produces three-dimensional (three spatial) metric per-

turbations with effective Planck mass

M2
Pl ≡

M3
∗

TM (t)XM (t)

∫

nab dw . (7.52)

This result requires us to specify the four-dimensional spacetime, by spec-

ifying TM (t) and XM (t), before we can know the Planck mass. As shown

in the previous subsections, the four-dimensional spacetime is dependent

on the particle species, and so we obtain a species dependent Planck mass.

This may not be so surprising given that each species follows a different line

element, but it is also possible that the assumption of matching only the

three-dimensional Ricci scalar is unwarranted.

Perhaps a more sophisticated calculation would try to elucidate the ef-

fective four-dimensional Einstein equation, or at least the leading order con-

tribution. Ultimately, we would like to identify 1/2M2
Pl as the constant
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of proportionality between the dominant (first order) contributions to the

four-dimensional Einstein tensor (1)G
(4)
µν and the stress-energy tensor (1)T

(4)
µν

for a given field in the thin, large-tension brane limit. One possible way

to perform this calculation would be to analyse the equations of motion for

metric perturbations. In the case of fundamental-brane cosmology, much

of the ground-work for such an analysis has been performed; see for ex-

ample [138, 139, 141]. For a domain-wall brane, extra complications arise,

again due to the averaging of the metric over the extra dimension. Further,

it seems that in order to identify the four-dimensional metric perturbations,

one is forced to perform a separation of scales for the metric perturbations

themselves, as in the scalar and fermion case. Such a calculation is beyond

the scope of this chapter, and for our purposes here we adopt equation (7.52)

as an approximate definition of the effective Planck mass.

7.3 Effective scale factor for a thin domain wall

Having developed the general framework for a domain wall with localised

matter fields and the associated four-dimensional metric, we would like to

better understand the behaviour of the effective scale factors aφ and aψ.

These will, of course, depend on the details of the domain wall construction.

Furthermore, we need to solve explicitly for the metric components n(t, w),

a(t, w) and b(t, w) in the presence of this domain wall. We are unable to find

analytic solutions for a coupled domain-wall gravity system, and numerical

solutions are beyond the scope of this initial work.6 To make progress, we

will assume that the domain wall is extremely thin and that therefore the

solutions for the metric components are well approximated by the set of

equations (7.14).

The profiles of the domain-wall fields will play a role in determining the

profiles f(t, w) and u(t, w) of the localised scalars and fermions respectively.

These localised fields will then contribute to the total stress-energy and this

back-reaction will modify the metric components. However, here we shall

ignore such back-reaction effects and consider the thin domain wall as a small

perturbation to the fundamental-brane scenario presented in Section 7.1. In

order for this perturbative approach to work, it is necessary that the brane

6If one were to pursue the numerical avenue, the methods described by Dzhunushaliev
et al. [233, 234, 235] may be a good place to start.
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localised sources be relatively small, meaning that ǫ≪ 1.

To compute aφ within this approximation scheme, we first normalise

f(t, w) such that T = 1. This is done by defining

f(t, w) = τ(t)f̃(t, w) (7.53)

so that

T (t) = τ(t) F̃−1/4(t) G̃3/4(t) , X(t) = τ(t) F̃ 1/4(t) G̃1/4(t) , (7.54)

where F̃ (t) and G̃(t) are defined as in equation (7.23) but with f(t, w) re-

placed by f̃(t, w). Enforcing T = 1 gives τ(t) = F̃ 1/4(t) G̃−3/4(t) so that

X(t) = F̃ 1/2(t) G̃−1/2(t). We may then compute F̃ (t) and G̃(t) by substi-

tuting in for the bulk metric solutions (7.14) yielding, for example,

G̃(t) =

∫

f̃2 an dw (7.55a)

= a0

∫

f̃2
[

e−2µ|w| − (ǫ+ ǫ̃)e−µ|w| sinh(µ|w|) + ǫ ǫ̃ sinh2(µ|w|)
]

dw .

(7.55b)

Requiring that the localisation profile f̃(t, w) be sharply peaked at the

centre of the domain wall (w = 0) and fall off rapidly in the bulk translates

to f̃2(t, w) sinh2(µ|w|) → 0 as w → ±∞. This condition is consistent with

the sufficiently-thin domain-wall brane we are dealing with here. Thus, we

may ignore the second order term O(ǫ ǫ̃) and write

G̃(t) = a0 [I1(t) − (ǫ+ ǫ̃)I2(t)] , (7.56)

where

I1(t) =

∫

f̃2(t, w)e−2µ|w| dw , (7.57a)

I2(t) =

∫

f̃2(t, w)e−µ|w| sinh(µ|w|) dw . (7.57b)

These integrals, I1(t) and I2(t), are dependent on the exact form of the extra-

dimensional profile f̃(t, w). However, if the profile is sufficiently peaked, as

we are assuming, we have I2(t) ≪ I1(t) because sinh(µ|w|) ∼ 0 close to the
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centre of the domain wall. Under these assumptions, we may compute

F̃ (t) = a3
0 [I1(t) − (3ǫ− ǫ̃)I2(t)] , (7.58)

so that the effective scale factor for the scalar field becomes

aφ(t) = X(t) = a0(t)

[

1 − (ǫ− ǫ̃)
I2(t)

I1(t)

]

(7.59a)

= a0(t)

[

1 +
ǫ̇

H0

I2(t)

I1(t)

]

. (7.59b)

This is one of the main results of this chapter — an explicit, quantitative

computation of the corrections to the effective four-dimensional scale fac-

tor arising from considering a domain-wall brane, rather than a fundamental

one. The corrections are proportional to the ratio between the rate of change

of energy density on the brane and the brane tension, ǫ̇, and inversely pro-

portional to the effective Hubble parameter. The corrections also depend in

a non-trivial way on the specific localisation profile of the associated field,

so that different fields are corrected differently.

The expression (7.59b) satisfies aφ → a0 for the independent limits of

a Minkowski brane with no sources (ǫ → 0), and an infinitely-thin brane

(I2 → 0). For a concrete example of this latter limit, consider the profile7

f̃2(t, w) =
Γ(λ+ 1

2 )√
πΓ(λ)

µ[cosh(µw)]−2λ , (7.60)

which obeys f̃2 → δ(w) as λ → ∞ (the thin domain-wall limit) and is a

typical example of smooth localisation factors; see, for example, the KK

modes obtained in Chapter 3. It is then straightforward to compute

I2(t)

I1(t)
=

2Γ(λ+ 1
2) −√

πΓ(λ)

2
√
πΓ(λ+ 1) − 4Γ(λ+ 1

2)
λ→ ∞−−−−→

1√
πλ

, (7.61)

which vanishes in the infinitely-thin wall limit. A better approximation for

this quantity can be found by solving the differential equation (7.34) for

f̃(t, w), using the background metric components n(t, w) and a(t, w).

For a fermion field the result for the effective scale factor is almost iden-

7The time dependence of this sample f̃ would arise from the time dependence of the
parameter λ, corresponding to the brane thickness changing over time.
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tical to the scalar case:

aψ(t) = a0(t)

[

1 +
ǫ̇

H0

J2(t)

J1(t)

]

, (7.62)

where the relevant integrals are

J1(t) =

∫

ũ2(t, w)e−3µ|w| dw , (7.63a)

J2(t) =

∫

ũ2(t, w)e−2µ|w| sinhµ|w| dw , (7.63b)

and ũ(t, w) is defined in a similar way to f̃(t, w).

The results from this section, namely equations (7.59b) and (7.62), are

concrete expressions for modifications to cosmology in a domain-wall brane

construction, and are the starting point for an analysis of the constraints

on such theories from observations. We expect that a species-dependent

scale factor should have an impact on a vast array of cosmological observ-

ables, including the predictions of BBN, the era of recombination and the

spectra of the microwave background and large scale structure. Acceptable

cosmological behaviour should imply constraints on the brane tension σ,

which appears in ǫ and µ, and the width of the domain wall, which enters

implicitly through the localisation profiles f̃ and ũ.

7.4 Conclusion

In this chapter we have proposed a formalism for examining the cosmol-

ogy associated with a five-dimensional domain-wall brane. The formalism is

based on the requirement that the kinetic and gradient terms of the effective

four-dimensional action be equivalent to their counterparts for a prototypi-

cal, four-dimensional FLRW metric. It is important to consider such things

because one should be able to constraint certain aspects of domain-wall

models, like the width of the wall, by comparing the theory’s cosmological

predictions with data.

The calculation of the effective Friedmann equation for the case of a

fundamental brane was reviewed in Section 7.1, and Sections 7.2 and 7.3

considered the generalisation to a domain-wall brane. The main obstacle

was the fact that the cosmological metric, equation (7.2), displays different

behaviour for its temporal and spatial components. This makes it difficult
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to perform the requisite dimensional reduction of the domain-wall model,

which involves integrating over the extra-dimension in the five-dimensional

action. In the case where the brane-metric is Minkowski spacetime, dimen-

sional reduction is straightforward because the kinetic and gradient terms

of a given field have equivalent structure. Their four-dimensional versions

share a common pre-factor — the overlap integral — and they can thus be

packaged together to form the usual, four-Lorentz-invariant kinetic term.

Furthermore, all the fields in the four-dimensional Minkowski action can be

normalised such that they share the same effective metric, and it is therefore

sensible to say that the four-dimensional theory has a unique spacetime.

In contrast to the Minkowski case, the more general metric which allows

for FLRW-like expansion on the brane treats the kinetic and gradient terms

differently. During the normalisation of the kinetic and gradient terms, one

must take into account the fact that different fields may feel different space-

times. Thus, for domain-wall branes it is not sensible to ask the question

“what is the effective scale factor on the brane?”. Since the brane has non-

trivial dependence on the extra-dimensional coordinate w, and since the

metric components n(t, w) and a(t, w) are not proportional to each other

in the bulk, each four-dimensional slice at constant w corresponds to a dif-

ferent spacetime. The effective four-dimensional spacetime for a localised

field with a smooth profile in w will thus be an average over all the different

slices. This produces a kind of “dimensional parallax” effect, since differ-

ent fields have different averages, and thus a different “perspective” of the

cosmological evolution of each slice.

Therefore, rather than seeking the effective scale factor on the domain-

wall brane (which was possible in the fundamental brane case), we must be

content with instead asking: “what is the effective four-dimensional space-

time in which a given localised field propagates?”. For each low-energy

four-dimensional field (each species and each mode of the KK tower), we

may answer this question by determining the effective, four-dimensional line

element ds24. If this line element takes the form of an FLRW line element,

then we may define an effective scale factor for the associated field. This is

as close as we are able to come to answering our original question.

In the case of a localised scalar field, the effective scale factor is given

in general by equations (7.27b) and (7.28), and for fermions one obtains

equation (7.42b). For the case of a domain-wall brane which is thin enough
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such that one can approximate the metric components n(t, w), a(t, w) and

b(t, w) with the solutions from the fundamental-brane scenario, the effective

scale factors for scalars and fermions are (7.59b) and (7.62) respectively. All

of these results reduce, in the infinitely-thin domain-wall limit, to the results

obtained for fundamental-brane cosmology, where the effective scale factor

is the bulk metric component a(t, w) evaluated at w = 0.

Aside from this basic difference between the fundamental-brane and the

domain-wall case, there are a number of other interesting consequences that

arise in the context of our formalism. In the cosmological scenario, the non-

trivial averaging of the metric over w means that, just as different modes of

a KK tower have different extra-dimensional profiles, it is also true that dif-

ferent energies of the same mass have different profiles. Thus, particles with

different energies feel a different scale factor! Also, due to the association

of γ0 with the time coordinate, it is difficult to see how the localisation of

fermion zero-modes can be recovered. It may be that the associated sepa-

ration ansatz needs to treat each component of the Dirac spinor separately,

leading to the physical interpretation that that different components of the

spinor feel different spacetimes. This is in analogy with the fact that, since

γ5 is associated with the extra-dimension, left- and right-handed spinors

couple differently to the kink background.

An outstanding problem is that of defining a unique Planck mass (if

possible) at the four-dimensional level. We have provided some insight

into the solution to this problem, in the form of the initial approxima-

tion (7.52). A more comprehensive treatment would begin by looking at

how four-dimensional gravity perturbations couple to the effective, four-

dimensional stress-energy tensor. It would also be of interest to look for

solutions to the equations of motion which have the background scalar field,

the kink, evolving in a self-consistent manner with the five-dimensional,

time-dependent cosmological metric.

The novel features presented in this chapter — species-dependent scale

factors and non-unique Planck masses — will lead to potentially observable

cosmological phenomena. The next step, which shall not be attempted in

the current thesis, would be to perform a detailed phenomenological analysis

to determine how these effects constrain parameters such as the width and

tension of the domain wall, and the extent to which they may allow new

approaches to current, unsolved problems in cosmology.



Chapter 8

Conclusions and outlook

Throughout this thesis we have maintained the theme of domain-

wall brane models of an infinite extra dimension, discussed all manner

of techniques related to their construction and their properties, and provided

a viable domain-wall brane-world extension of the standard model. The

addition of extra spatial dimensions, be they compact or non-compact, to

our current models of the universe certainly seems plausible, and we should

work hard to understand the consequences. From our point of view, the

case of a non-compact, infinite extra dimension is the more appealing path

of study, as such a scenario places all spatial dimensions on an equal footing

from the outset. Implementing this idea in the tried-and-tested language of

field theory leads us naturally to domain-wall branes generated by a scalar

field, and the ensuing studies have been the focus of this thesis.

The tools that we have presented here — stability analysis, mode decom-

position, analysis of the thin-kink limit, fermion and Higgs localisation, the

smooth version of the Randall-Sundrum warped metric, the Dvali-Shifman

and clash-of-symmetries mechanisms, and domain-wall cosmology — form

a set of building blocks for constructing and analysing domain-wall brane

models of an infinite extra dimension. We have used these tools to piece

together an SU(5) version of the standard model confined to a domain-wall,

and we found that such a model is not only fairly minimal in its construction,

but also has promising phenomenology. We have further explored the ex-

tension to an E6 invariant action, which lead to the beginnings of an elegant

realisation of a grand-unified-theory localised to a domain-wall brane. The

next step would be to complete these models, and determine their precise

phenomenology and resulting compatibility with current and future experi-

237
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mental data.

In Chapter 2 we studied a simple model with two scalar fields charged

under a U(1) ⊗ U(1) symmetry. The solutions to the Euler-Lagrange equa-

tions of motion were a pair of kinks which acted to semi-confine the gauge

fields of the U(1) ⊗ U(1) symmetry. Our interest in this set-up lay in de-

termining its perturbative stability. We looked at the normal modes of

small fluctuations around the classical kink-gauge background, and found

the modes to be oscillatory for a large range of parameters of the model, es-

tablishing the stability of the configuration. This model was then extended

to include gravity and we gave analytic solutions for a smooth version of

the Randall-Sundrum warped metric coupled to the kink background for

the case where the gauge fields were set to zero. Our search for numerical

solutions where the gauge fields assumed a non-zero configuration in the

presence of gravity did not succeed, and we gave an argument which sup-

ported the non-existence of such solutions. Further work could look for a

loophole in this argument and attempt to find kink-gauge-gravity solutions,

but one must be careful to ensure the Randall-Sundrum fine-tuning con-

dition is satisfied. The perturbative stability techniques presented in this

chapter can be applied generally to determine if a given kink configuration

is stable or not, which is of crucial importance if the background is to be

used to confine the standard model.

A comprehensive study of the modes of the kink, and the modes of

localised scalar and fermion fields, was undertaken in Chapter 3. Such a

mode decomposition — a generalised Fourier transform — forms a neces-

sary part of the analysis of domain-wall brane models, as it not only gives

the properties of the ground state modes, but also elucidates the struc-

ture of the higher-mass modes, the Kaluza-Klein modes. A useful way of

understanding how a kink localises four-dimensional fields is to consider one-

dimensional quantum mechanics, with the kink setting up a potential well

along the extra-dimension. For our case, the potential was found to have

the form of a symmetric modified Pöschl-Teller potential. We then solved

the resulting Schrödinger-like equation to determine the extra-dimensional

profiles of the tower of Kaluza-Klein modes trapped to the domain-wall re-

gion. An important result was that the mass spectrum of the modes was

directly related to the inverse-width of the domain-wall, implying a direct

relationship between the structure of the wall and the particles that could be
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produced in future collider experiments. Important for model building was

the conclusion that chiral, massless, four-dimensional fermions can be lo-

calised to the kink, along with a four-dimensional scalar field with arbitrary

quartic potential, which is necessary to implement the Higgs mechanism on

the brane.

We also systematically studied the limiting behaviour of the kink, with

a focus on the infinitely-thin kink limit. This is the phenomenologically

important case because we have not measured any Kaluza-Klein modes, and

so they must be very heavy — the kink must be very thin — if they exist at

all. The thin kink limit also allows for a useful comparison with fundamental

branes in string theory. During our analysis we discovered an interesting

result: the four-dimensional zero mode corresponding to translations of the

kink has its dynamics frozen out in the thin kink limit. Although the mass

of this zero mode remains strictly zero, it is frozen out due to a divergent,

quartic self-coupling term in the effective four-dimensional action. This

is potentially at odds with the existence of Nambu-Goldstone bosons in

theories with spontaneously broken symmetries, but we made the physical

interpretation that our infinitely-thin kink corresponded to an infinitely-rigid

one, and so the zero mode remains only as a constant shift of the entire wall,

not as a dynamical field. As part of this study we considered the implicit

collective coordinate approach, which we deemed to be an inadequate way

of decomposing a given field in a general way. It is left for future studies

to better understand this failure of implicit collective coordinates, and to

determine the extent to which they are a useful way of characterising degrees

of freedom associated with broken symmetries.

Chapter 4 was devoted to the extension of the previous mode analysis for

the situation where gravity is included. We incorporated localised gravity

via the generalisation of the Randall-Sundrum warped metric to the case

where the brane is formed by a domain wall, and the metric becomes a

smooth version of the original. The trapping of gravity was reviewed, and

we discussed how the volcano potential induces a spectrum containing a

massless graviton, which is followed directly (there is no mass gap) by a con-

tinuum of gravity modes. It was then shown that the trapping potentials for

fermions and scalar fields coupled to a kink background become volcano-like

when gravity is turned on. This effect induces a continuum of Kaluza-Klein

states, starting at zero mass, in the spectra of four-dimensional fermions and
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scalars. The resulting physics is not as drastically modified as one might

think, because the extra-dimensional profiles of the continuum modes are

highly suppressed near the centre of the domain wall. Furthermore, the chi-

ral fermion zero modes remain in the spectrum, tachyonic scalar modes (the

Higgs) remain tachyonic, and the massive bound Kaluza-Klein modes mani-

fest as resonances in the continuum. We constructed a toy-model to analyse

the interaction between the gravity-induced continuum modes and modes

bound to the brane, and demonstrated that such an interaction is highly

suppressed. This means that we can confidently incorporate the Randall-

Sundrum warped metric into our domain-wall model, giving us a mechanism

for trapping gravity.

Drawing on the techniques developed in the previous chapters, Chap-

ter 5 proposed a domain-wall brane model of an infinite extra dimension,

with an action that respected an SU(5) symmetry, and which reproduced at

low energies a single generation version of the standard model. Our model

also reproduced general relativity at low energies. For the localisation of

gauge fields, we relied on the Dvali-Shifman mechanism, which required us

to assume that SU(5) Yang-Mills is confining in five-dimensions. We gave

a detailed discussion of this mechanism, and presented some lattice-gauge-

theory results which suggest that Dvali-Shifman can be made to work in a

five-dimensional setting. Apart from the gauge fields, the field content of

our SU(5) model consists of two scalars η and χ which form the domain

wall, two fermion fields Ψ5 and Ψ10 whose localised zero modes provide one

generation of fermions of the standard model, and a scalar Φ which yields

the four-dimensional Higgs doublet.

Following the presentation of the SU(5) model, we gave a specific, an-

alytic example for the kink background configuration, and determined the

profiles of the zero mode fermions. This explicitly demonstrated how the

split-fermion mechanism is inherent in our model. We also showed how the

Higgs doublet and the coloured Higgs can be spilt in the extra dimension.

The four-dimensional, effective electroweak sector was computed, and the

fermion masses me, md and mu were determined in terms of overlap inte-

grals of extra-dimensional profiles. Because of the splitting of the fermion

profiles, the usual tree-level mass relation of SU(5), namely me = md, is au-

tomatically absent in our model. Similarly, proton decay due the coloured

Higgs can be suppressed by arranging to have the appropriate profiles well
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separated. We discussed how the Randall-Sundrum warped metric has lit-

tle impact on these general properties of our model, and we outlined the

relationships among the various scales in the theory.

There are many avenues to take beyond this initial brane-world model.

To start with, one needs to extend the fermion content to three generations

and work out how to determine their extra-dimensional profiles, which may

be complicated by the mixing induced by the Yukawa term that couples the

three generations to the kink. A mechanism for obtaining massive neutrinos

is also required. Following these model building problems, the parameters

of the full theory must be fit to experimental data, and one would need to

ensure that proton decay is well suppressed. Analysing the unification of the

effective four-dimensional gauge coupling constants into the five-dimensional

SU(5) coupling is an outstanding issue. The full spectrum of Kaluza-Klein

modes, including the massive gauge bosons, is needed before proceeding

with such an analysis. For this, one would also want to understand how

the gauge boson spectrum is modified in the presence of the warped metric,

as we know that for the case of matter fields a continuum is induced. This

seems to be a non-trivial task, as the gauge sector is non-perturbative in

the bulk. As we have previously emphasised, confinement of Yang-Mills in

five-dimensions is crucial for Dvali-Shifman, and hence crucial to the success

of our model. More work is needed — in the form of a dedicated lattice-

gauge-theory calculation — to check the non-perturbative aspects of our

model, and verify or debunk its validity. If Dvali-Shifman does work in five-

dimensions, then our SU(5) model becomes a very promising candidate for

a theory of an infinite extra dimension.

In Chapter 6 we considered extensions of our SU(5) model to larger gauge

groups. The clash-of-symmetries mechanism played an important role here,

and we gave an in-depth review of it, pointing out a natural connection with

Dvali-Shifman. Utilising these two mechanisms, our first extension of the

SU(5) model was to SO(10), but, unfortunately, there were problems with

the localisation of the gauge bosons. In particular, the photon and neutral

Z boson leak into the bulk on one side of the domain wall. The cure was to

move to an E6 invariant theory. We first performed a comprehensive analysis

of the Casimir invariants associated with this group and found that there

exist twenty-seven distinct embeddings of SO(10)⊗U(1) in E6. Using these

embeddings in a clash-of-symmetries context, we found that one could obtain
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either SO(8) ⊗ U(1)2 or SU(5) ⊗ U(1)2 as the symmetry on the brane. The

latter of these is the phenomenologically acceptable one, and we proceeded

to construct a Higgs potential, and find the associated domain-wall solutions,

which yielded localised SU(5) gauge bosons. Unfortunately, such a solution

was found to have a greater energy density than the corresponding SO(8)

theory, but there remains a lot of freedom in choosing the form of the Higgs

potential, so it is certainly possible that the SU(5) model can be made

energetically favourable.

Assuming that such a stable background configuration could be found,

we looked at adding fermions to the model using the 27 of E6. When cou-

pled to the kink, this multiplet separated into individual SU(5) multiplets,

in direct analogy with the splitting of the fermions in the SU(5) model of

Chapter 5. Of these split multiplets, some were localised to the kink and

some were not, depending on their hypercharges. Those that were localised

consisted of one generation of standard model fermions plus two singlet neu-

trinos, which was a non-trivial outcome, and certainly provides motivation to

consider a more realistic version of the E6 model. Before working on a realis-

tic model, it is important to understand the stability of the background kink

configuration, and find, if possible, a Higgs potential that endows the SU(5)-

inducing kink with the lowest energy density. Following this, one would need

to incorporate gravity in the form of the Randall-Sundrum warped metric,

and arrange to have the SU(5) symmetry on the brane break to the standard

model, and ensure that the electroweak symmetry can be further broken. It

would also be of interest to study the rearrangement conjecture regarding

the twenty-seven different embeddings of SO(10) ⊗ U(1) in E6.

Leaving particle physics behind, we studied the cosmology of domain-

wall branes in Chapter 7. The fundamental brane case was first reviewed,

and then we moved on to propose a formalism for analysing the cosmology

of branes that are constructed from a scalar field. The key idea was to

inspect the kinetic and gradient terms of the four-dimensional fields in the

dimensionally reduced, effective action. These terms must be normalised in

a specific way for an expanding spacetime, and we determined such normal-

isation by matching the effective action with a prototype action. This was

done for both scalar and fermion fields. The general result is that different

species, and different Kaluza-Klein modes of the same species, propagate

in different effective, four-dimensional spacetimes. They thus experience a

different scale factor, and we concluded that it is not sensible to define a
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unique scale factor for the effective theory of a domain-wall brane model. It

is also difficult to define a unique effective Newton’s constant in the four-

dimensional theory, although our analysis of this particular aspect was only

preliminary and requires additional study.

Further to these results, we found that, for a cosmological spacetime, a

particle associated with a given Kaluza-Klein mode has an extra-dimensional

profile that depends on the four-dimensional energy of the particle. This

implies that the effective scale factor also changes with energy. Localised

fermions are also no longer chiral because the usual separation ansatz — that

each component of the five-dimensional Dirac spinor has the same extra-

dimensional profile — breaks down when the background spacetime is not

exactly Minkowskian. It was left to future work to consider a more gen-

eral ansatz for the separation, and to determine if it is possible to recover

a localised fermion with proper spinor structure. We showed how these re-

markable effects are suppressed in the thin domain-wall limit. To this end,

we found expressions for corrections to the scale factor of the fundamental-

brane case when the brane is considered as a domain-wall with relatively

small width. These corrections are proportional to overlap integrals, and

can be made small by decreasing the width of the wall. This analysis as-

sumed that the metric for the domain-wall brane could be well approximated

by the metric of the fundamental-brane case. It would be interesting to find

solutions, possibly numerical ones, which have the kink background evolv-

ing consistently with the metric components. Then one could think about

computing observable effects of the cosmology of domain walls, and possibly

constrain the width of the wall by comparing such effects with data.

The idea of extra dimensions is both old and profound, and it may be

that nature is hiding such dimensions from us, in reach only of high energy

processes, processes that we may one day harness with our machines. The

possibility of extra dimensions comes with the responsibility, for us, of work-

ing out if they do in fact exist. While there are many theoretical directions

we can take to tackle this fascinating problem, this thesis attempted to stay

on a more traditional path by considering an infinite extra dimension, in

line with the spatial dimensions we already know of, and by utilising stan-

dard, field theoretic tools. The natural outcome of these basic tenets is the

domain-wall brane model, of which our SU(5) model is but the beginning

of what we hope shall be a faithful description of the extra-dimensional

character of the world we live in.
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Appendix A

Conventions,

definitions and identities

Here we state the important conventions and definitions used throughout

this thesis, including the sign choices we have made when working with

general relativity, along with some useful identities and limits. The vielbein

formalism is also briefly outlined. Our notation for the commutator of A and

B is [A,B] ≡ AB −BA, and for the anti-commutator, {A,B} ≡ AB +BA.

A.1 Spinors

The Pauli matrices are

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

, (A.1)

and are normalised to {σi, σj} = 2δij , where i, j ∈ {1, 2, 3}. In the Dirac

representation, the four Gamma matrices are

γ0 =

(1 0

0 −1) , γi =

(

0 σi

−σi 0

)

, (A.2)

where 1 is the 2×2 identity matrix. These matrices satisfy {γµ, γν} = 2ηµν ,

where µ ∈ {0, 1, 2, 3} and ηµν = diag(1,−1,−1,−1). The fifth, independent

Gamma matrix is

γ5 = iγ0γ1γ2γ3 =

(

0 11 0

)

. (A.3)
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A four-dimensional spinor ψ(xµ) in a Minkowski spacetime with metric

ηµν = (+1,−1,−1,−1) uses the Gamma matrices in equation (A.2). Its left-

and right-chiral components are, respectively,

ψL =
1

2
(1 − γ5)ψ , (A.4a)

ψR =
1

2
(1 + γ5)ψ , (A.4b)

and its charge conjugate is

ψc = γ2ψ∗ . (A.5)

In five-dimensions, a fermion Ψ(xM ), where M ∈ {0, 1, 2, 3, 5}, uses the

Gamma matrices ΓM defined by {ΓM ,ΓN} = 2ηMN . There is a choice for

the signature of the Minkowski metric, and an associated choice for the

Gamma matrices:

ηMN = diag(+1,−1,−1,−1,−1) has ΓM = (γµ,−iγ5) , (A.6a)

ηMN = diag(−1,+1,+1,+1,+1) has ΓM = (iγµ, γ5) . (A.6b)

In both cases the five-dimensional charge conjugate is defined by

Ψc = Γ2Γ5Ψ∗ . (A.7)

A.2 Some useful integrals and limits

An integral which is often used when integrating out the extra-dimension to

obtain an effective, four-dimensional action is:

∫ ∞

−∞
cosh−2a(z) dz =

√
π Γ(a)

Γ(a+ 1
2)

if ℜ(a) > 0 . (A.8)

Some relevant limits of the generalised factorial function Γ(z) are:

lim
a→0

Γ(a+ n)

a Γ(a)
= Γ(n) , (A.9a)

lim
a→∞

Γ(a+ n)

an Γ(a)
= 1 . (A.9b)
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The Dirac delta-distribution can be related by two limits to the hyperbolic-

cosine function:

δ(x) = lim
a→∞

Γ(a+ 1
2)√

π Γ(a)
b cosh−2a(bx) , (A.10a)

δ(x) = lim
b→∞

Γ(a+ 1
2)√

π Γ(a)
b cosh−2a(bx) . (A.10b)

A.3 Sign conventions for general relativity

The metric is gµν , and our conventions for the Christoffel symbols (connec-

tion coefficients), Riemann curvature tensor, Ricci tensor, Ricci scalar and

Einstein tensor are, respectively,

Γσµν =
1

2
gσρ (∂νgρµ + ∂µgρν − ∂ρgµν) , (A.11a)

Rµνσρ = ∂σΓ
µ
νρ − ∂ρΓ

µ
νσ + ΓµλσΓ

λ
νρ − ΓµλρΓ

λ
νσ , (A.11b)

Rµν = Rσµσν , (A.11c)

R = gµνRµν , (A.11d)

Gµν = Rµν −
1

2
gµνR . (A.11e)

The choices that we have made are for the signs of the Riemann ten-

sor (A.11b) and the Ricci tensor (A.11c). This implies that the Einstein

equation is Gµν = 8πGNTµν , where GN is Newton’s constant, and Tµν is

the stress-energy tensor. In terms of Misner, Thorne and Wheeler [236]

(MTW), this choice corresponds to a + for column 3 and a + for column

4. And we also have T00 ≥ 0. We then get a choice for the signature of the

metric, either space-like or time-like, corresponding to column 2 of MTW.

Such a choice constrains the sign for the kinetic terms in the action, such

that, if A is some field, then the term (∂tA)2 appears as a positive quantity.

This is true for all fields, including the metric (see the end of §93 of Landau

and Lifshitz [237], page 270).

Space-like metric

For a space-like metric, with signature (− + ++), which corresponds to

MTW’s + + +, the Ricci scalar appears with a positive coefficient, but,

for example, the kinetic term for a scalar field appears with a negative
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coefficient. The action, Einstein’s equations and the stress-energy tensor

are

S =

∫

d4x
√−g

[

M2
Pl(R− 2Λ) + Lmatter

]

, (A.12a)

Gµν =
1

2M2
Pl

Tµν − gµνΛ , (A.12b)

Tµν = −2
∂Lmatter

∂gµν
+ gµνLmatter . (A.12c)

Here, M2
Pl = 1/16πGN , the constant Λ is an optional bulk cosmological

constant, and Lmatter includes any matter or gauge fields. For a real scalar

field, the Lagrangian and stress-energy tensor are

Lmatter = −1

2
gµν∂µφ∂νφ− 1

2
m2φ2 , (A.13a)

Tµν = ∂µφ∂νφ− 1

2
gµν

(

gσρ∂σφ∂ρφ+m2φ2
)

. (A.13b)

Time-like metric

For a time-like metric, with signature (+ − −−), which corresponds to

MTW’s − + +, the Ricci scalar must appear with a negative coefficient,

while other fields have kinetic terms with their usual appearance. The ac-

tion, Einstein’s equations and the stress-energy tensor are

S =

∫

d4x
√−g

[

M2
Pl(−R− 2Λ) + Lmatter

]

, (A.14a)

Gµν =
1

2M2
Pl

Tµν + gµνΛ , (A.14b)

Tµν = +2
∂Lmatter

∂gµν
− gµνLmatter . (A.14c)

For a real scalar field, the Lagrangian and stress-energy tensor are

Lmatter =
1

2
gµν∂µφ∂νφ− 1

2
m2φ2 , (A.15a)

Tµν = ∂µφ∂νφ− 1

2
gµν

(

gσρ∂σφ∂ρφ−m2φ2
)

. (A.15b)

In flat space, for both choices of the signature, we have T00 = 1
2 φ̇

2 +
1
2 |~∇φ|2 + 1

2m
2φ2.
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A.4 The vielbein formalism

We know a lot about Minkowski spacetime, which is described by the metric

ηαβ, and for which we build actions that are Lorentz scalars. In constructing

an action which respects the general coordinate transformations of general

relativity, we can use the vierbein eαµ(x
ρ) (or vielbein as we shall call it for

a spacetime of arbitrary dimension) to turn a local Lorentz vector at point

xρ, with index α, into a general coordinate vector, with index µ. The metric

of the general spacetime is then

gµν = eαµ e
β
ν ηαβ . (A.16a)

Note that ηαβ is a constant diagonal metric, while gµν can depend on the

spacetime coordinate. The vielbeins specify gµν up to a Lorentz transfor-

mation. The inverse vielbein e µ
α satisfies

eαµe
ν
α = δνµ , (A.17a)

eαµe
µ
β = δαβ , (A.17b)

and we use ηαβ (ηαβ) to lower (raise) Lorentz indices, and gµν (gµν) to lower

(raise) coordinate indices.

Consider a Lorentz object φ that, under an infinitesimal Lorentz trans-

formation Λαβ = δαβ + ǫαβ, becomes φ′. We define the anti-symmetric object

σαβ by

φ′ =

(

1 +
1

2
ηαγ · ǫγβ · σαβ

)

φ . (A.18)

For clarity, we use the operator ‘·’ to denote usual multiplication of numbers.

A Lorentz vector V δ transforms to (V ′)γ using

(σαβ)γδ = ηγαδβδ − ηγβδαδ . (A.19)

For a spinor ψ we have

σαβ =
1

4
[γα, γβ ] , (A.20)

where the γα are the flat space Gamma matrices defined by {γα, γβ} = 2ηαβ .

The derivative which acts like a coordinate vector is then

Dµφ =

(

∂µ +
1

2
σαβωµαβ

)

φ . (A.21)
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This derivative is used to construct kinetic terms that transform as general

coordinate scalars.

Of course, we have not yet specified the so-called spin connection ωµαβ .

Recall that the connection coefficients Γρµν are used when computing deriva-

tives of vectors and tensors in GR, and are defined by demanding that the

covariant derivative of gµν vanishes. Similarly, we demand that the covariant

derivative of the vielbein vanishes to determine the spin connection:

Dµe
α
ν = Dµe

ν
α = 0 . (A.22)

Since the vielbein has both Lorentz and coordinate indices, its covariant

derivative has multiple components:

Dµe
α
ν = ∂µe

α
ν − Γρµνe

α
ρ +

1

2
(σγδ)αβ · ωµγδ · eβν , (A.23)

Substituting equation (A.19) into equation (A.23) and demanding that the

latter vanishes yields

ωµαβ = e ν
α

(

∂µeβν − Γρµνeβρ
)

. (A.24)

This formula can be used to compute the explicit components of the spin

connection. For a diagonal metric we have diagonal vielbeins, the inverse is

e µ
α = (eαµ)

−1, and the spin connection simplifies to

ωµαβ = e ν
β · ∂νeαµ − e ν

α · ∂νeβµ , (A.25)

which is manifestly anti-symmetric in α and β. See Weinberg [238] for a

more detailed discussion of the vielbein formalism.



Appendix B

Numerical techniques

Given a function y(x) that solves some differential equation, we want to use

an appropriate numerical technique to find solutions for y. The technique

that we use will depend on the type of differential equation, and whether

we have initial conditions or boundary conditions. In this thesis, for the

most part, we encounter ordinary, second order differential equations, which

a lot of the time simplify to a Schrödinger-like equation. This makes the

numerics much easier to handle.

For a second order differential equation with boundary conditions spec-

ified at the edges of the domain of x, the relaxation on a mesh technique

provides a satisfactory way of solving for y. It can be slow if the domain is

large and there are many coupled equations, as the technique requires many

tens-of-thousands of iterations to converge to acceptable accuracy.

If the differential equation takes the form of a Schrödinger-like equa-

tion, we can do much better than the relaxation technique. The fourth

order Runge-Kutta method is normally used to solve a first order differen-

tial equation, but it can be adapted to a second order equation with initial

conditions. We can implement a version of the shooting method if we have

boundary conditions rather than initial conditions.

The core equations for these two numerical techniques are given in the

next two sections. Both techniques assume that the function y can be well

approximated by evaluating it at evenly spaced positions along the domain

of x (on a mesh). The domain of x is defined by

L− ≤ x ≤ L+ . (B.1)

275
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If the domain is infinite then it must be truncated. We now choose the

number of divisions to split this domain into for numerical evaluation, the

number being N . Equivalently, we can choose the step size between evalu-

ation points, h. For good numerical accuracy, N should be large, meaning

h should be small. It is good practice to always check a given solution with

the solution computed with 2N . Also, if the domain is symmetric about

x = 0, it is a good idea to choose N to be even so that x = 0 is one of the

evaluated points. Note that the number of evaluated points is N + 1, and

we label these points with the index n, where 0 ≤ n ≤ N . We then make

the following definitions:

h =
L+ − L−

N
, (B.2a)

xn = hn + L− , (B.2b)

yn = y(xn) . (B.2c)

This scheme transforms the continuous variable x into the discrete index n.

In what follows, prime denotes a derivative with respect to x.

B.1 Relaxation on a mesh

Given the second order differential equation

y′′ = R
(

y, y′
)

, (B.3)

we can approximate the second derivative by a difference equation relating

adjacent mesh points, and invert this equation to get

yn =
1

2

(

yn+1 + yn−1 − h2Rn
)

. (B.4)

The set of values yn for all n provide an improved guess for the solution y,

computed in terms of the previous guess. Equation (B.4) must be applied

repeatedly for all points n until the difference between yn’s of successive

iterations is sufficient small. In practice, one must take a weighted average

of the old and new guesses to seed the next iteration:

yn = θyn + (1 − θ)yn , (B.5)
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where θ is the relaxation damping parameter (we have found θ = 0.1 to be

a sensible choice), and yn are the values to use for yn in the subsequent it-

eration. An initial guess must be made for yn to begin the algorithm, which

can most of the time be yn = 0 for all n. The relaxation on a mesh tech-

nique can only accommodate boundary value problems, where the boundary

conditions, which can be Neumann and/or Dirichlet, are used to determine

y0 and yN . If the problem consists of multiple, coupled, second order differ-

ential equations, then one can just apply equations (B.4) and (B.5) to each

function in succession, and repeat this for each iteration.

B.2 Twofold fourth-order Runge-Kutta

The fourth order Runge-Kutta technique is used to solve first order differ-

ential equations of the form

y′ = F (x, y) , (B.6)

with given initial condition y(L−). This technique is not iterative. Rather,

it computes y at the next point in terms of y and F at previous points:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) + O(h5) , (B.7)

where

k1 = F (xn, yn) , (B.8a)

k2 = F (xn + 1
2h, yn + 1

2hk1) , (B.8b)

k3 = F (xn + 1
2h, yn + 1

2hk2) , (B.8c)

k4 = F (xn + h, yn + hk3) . (B.8d)

Note that the k’s depend on n.

We can apply Runge-Kutta to the Schrödinger-like equation

−ψ′′ + V ψ = Eψ , (B.9)

where ψ(x) is the function to solve for, V (x) is an arbitrary function of x,

and E is a constant (which can really just be absorbed in V ). Let φ = ψ′
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to get the first order, matrix differential equation

−
(

φ

ψ

)′

+

(

0 V − E

1 0

)(

φ

ψ

)

= 0 . (B.10)

For convenience, define

w1 = V (xn) − E , (B.11a)

w2 = V (xn + 1
2h) − E , (B.11b)

w3 = V (xn + h) − E , (B.11c)

w4 = V (xn + 3
2h) − E , (B.11d)

which depend on the point n. Given the value and derivative of ψ at a point,

we can compute the next value via

ψn+1 =
1

24

(

aψn + bψ′
n

)

+ O(h5) , (B.12)

where

a = 24 + 4h2(w1 + 2w2) + h4w1w2 , (B.13a)

b = 24h+ 4h3w2 . (B.13b)

Given two adjacent values of ψ, we can compute the next value using

ψn+2 =
1

c
(dψn+1 + eψn) + O(h5) , (B.14)

where

c = 72 + 12h2w2 , (B.15a)

d = 144 + 12h2(3w2 + 2w3 + 3w4)

+ h4(5w2w3 + 8w2w4 + 5w3w4) , (B.15b)

e = −72 − 12h2w4 + h4(w1w2 − 2w1w3 + w2w3) . (B.15c)

In practice, one specifies the initial conditions ψ0 and ψ′
0, equation (B.12)

is then used to compute ψ1, and then equation (B.14) is used to compute the

rest of the values ψ2,...,N . If boundary conditions are given instead of initial

conditions, the shooting method can be used. In implementing the shooting
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method, note that the equations are linear in ψ (assuming V is free of ψ), so

taking ψ0 = 0 or ψ0 = 1 covers all possible solutions, and then only ψ′
0 needs

to be scanned to find the solution that gives the correct boundary value ψN .

Further note that if the solutions are known to have definite parity, then

ψ0 = 1, ψ′
0 = 0 finds the even solution, and ψ0 = 0, ψ′

0 = 1 finds the odd

solution. The resulting solutions can be normalised if necessary. For the

definite parity case, if the eigenvalue E of the Schrödinger-like equation is

not known, then the shooting method can again be applied to scan over

E until, say, a bound solution is found (one that has yN = 0, or at least

has y very close to zero). This is a very effective technique, and is how the

resonant peaks in Figures 4.4, 4.5 and 4.6 were found.





Appendix C

Symmetric modified

Pöschl-Teller potential

In this appendix we give analytic solutions to the symmetric modified Pöschl-

Teller potential. The non-symmetric potential was first studied by Rosen

and Morse in the context of molecular dynamics [239]. They presented so-

lutions in terms of hypergeometric functions. Later work by Nieto [240]

computed explicit forms of the bound mode solutions, including normalisa-

tion coefficients, in terms of regular functions. Section 5.3 of Rajaraman [46]

lists unnormalised solutions for the bound and continuum modes for a spe-

cific case of the potential, and the hypergeometric forms of the solutions

are again explored by Hung and Tran [209]. Bound state solutions are also

expressed in terms of Gegenbauer polynomials in the paper by de Castro

and Hott [210]. More recently, there has been some work investigating ways

to classify and generate potentials that are exactly solvable [241, 242], and

these schemes include the Pöschl-Teller potential. We present here the exact

closed form solutions for the continuum modes and their normalisation fac-

tors for the specific case of the symmetric modified Pöschl-Teller potential.

This includes simple expressions for the bound states, simple recurrence re-

lations for higher modes, normalisation coefficients, and the closure relation.

The time-independent Schrödinger equation with the symmetric version

of the potential, and with wave-function ψn(x) and energy En, takes the

form
(

− d2

dx2
+ l(l + 1) tanh2 x− l

)

ψn = Enψn . (C.1)

If l = 0 then the solutions are just plane waves. For l > 0 there are a set of

281



282 Appendix C. Symmetric modified Pöschl-Teller potential

bound modes followed by continuum modes. The bound solutions are

El0 = 0 ψl0(x) = Al0 cosh−l x , (C.2a)

El1 = 2l − 1 ψl1(x) = Al1 sinhx cosh−l x , (C.2b)

El2 = 4l − 4 ψl2(x) = Al2

(

2l − 2

2l − 1
cosh−l+2 x− cosh−l x

)

, (C.2c)

...

Eln = 2nl − n2 ψln(x) =
1

√

Eln

(

l tanhx− d

dx

)

ψl−1
n−1(x) . (C.2d)

The square integrable ortho-normalisation condition is

∫ ∞

−∞
ψln(x)ψ

l
n′(x) dx = δnn′ , (C.3)

and the normalisation coefficients are

Al0 =

√

Γ(l + 1
2)√

π Γ(l)
, (C.4a)

Al1 =
√

2l − 2Al0 , (C.4b)

Al2 =
√

(2l − 1)(l − 2)Al0 . (C.4c)

These bound mode solutions are valid for for all positive real values of

l. There are ⌈l⌉ bound modes1 and so the mode index takes the values

n = 0, 1, . . . , ⌈l − 1⌉. For the continuum we have found forms for the solu-

tions in terms of regular functions for the case where l is a positive integer.

Instead of the discrete bound mode index n, the continuum is indexed with

a continuous label p ∈ R. The solutions take the form

E1
p = p2 + 1 ψ1

p(x) = A1
pe
ipx (tanhx− ip) , (C.5a)

E2
p = p2 + 4 ψ2

p(x) = A2
pe
ipx
(

3 tanh2 x− (p2 + 1) − 3ip tanhx
)

, (C.5b)

...

Elp = p2 + l2 ψlp(x) =
1

√

Elp

(

l tanhx− d

dx

)

ψl−1
p (x) . (C.5c)

1We use the standard notation ⌈.⌉ for the ceiling function.
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The delta distribution ortho-normalisation condition is

∫ ∞

−∞
ψlp(x)ψ

l
p′(x)

∗ dx = δ(p − p′) , (C.6)

and the normalisation coefficients are

A1
p =

1√
2π

1
√

p2 + 1
, (C.7a)

A2
p =

1
√

p2 + 4
A1
p . (C.7b)

These continuum modes are valid only for l = 1, 2, 3, ...; for other values of

l one must resort to the hypergeometric form.

For a given l, the bound modes ψln(x) and continuum modes ψlp(x) form

a complete set. These two classes are orthogonal to each other,

∫ ∞

−∞
ψln(x)ψ

l
p(x) dx =

∫ ∞

−∞
ψln(x)ψ

l
p(x)

∗ dx = 0 , (C.8)

and the closure relation is

⌈l−1⌉
∑

n=0

ψln(x)ψ
l
n(x

′) +

∫ ∞

−∞
ψlp(x)ψ

l
p(x

′)∗ dp = δ(x − x′) . (C.9)


