
Scripting the Internet of Things

Damien P. George

George Robotics Limited,
Cambridge, UK

PyCon AU, Melbourne, 12th August 2016

The Internet of Things?

IoT = Microcontrollers + wireless communications

I lighting: homes and office buildings

I heating and cooling houses

I traffic monitoring: sensors in/above roads

I farming: water levels, livestock tracking

I logistics: real-time tracking of shipping containers

D.P. George MicroPython and IoT 2/19

End Nodes

The end nodes are the fingertips: sensors and actuators.

Image source: http://www.mtechlog.com/2015/10/iot-routing-solution-for-wireless.html

Image source: http://www.omega.com/pptst/UWIR-2.html

D.P. George MicroPython and IoT 3/19

Complexity of hardware!

High-level scripting
languages allow:

I easier to read/write code

I abstraction of HW

I rapid prototyping

I more portable code

I library reuse

Source: STM32F405 manual

D.P. George MicroPython and IoT 4/19

Lua and eLua www.lua.org www.eluaproject.net

function factorial(n)

local x = 1

for i = 2, n do

x = x * i

end

return x

end

gpio.mode(1, gpio.OUTPUT)

gpio.write(1, gpio.HIGH)

Pros: simple language, light-weight, fast

Cons: simple language, no native bitwise
ops, no integers (recently fixed!, eLua yet
to catch up)

Uses in IoT: NodeMCU ESP8266 board

D.P. George MicroPython and IoT 5/19

JavaScript

www.espruino.org, jerryscript.net, www.tessel.io, duktape.org

setInterval(function() {

digitalWrite(LED1, Math.random()>0.5);

}, 20);

Pros: very popular language, large community, simple but powerful

Cons: some crazy semantics, callback-based, all numbers are floats

Uses in IoT: Espruino boards, ESP8266, Tessel boards, ...

D.P. George MicroPython and IoT 6/19

Ruby www.ruby-lang.org mruby.org

class Integer

def factorial

f = 1; for i in 1..self; f *= i; end; f

end

end

Pros: popular language, lots of features and libraries

Cons: no proper support for microcontrollers

Uses in IoT: none yet?

D.P. George MicroPython and IoT 7/19

Is it possible to put Python on a microcontroller?

Why is it hard?

I Very little memory (RAM, ROM) on a
microcontroller.

Motivation for using Python:

I High-level language with powerful features (classes, list
comprehension, generators, exceptions, . . .) and libraries.

I Large existing community.

I Very easy to learn, powerful for advanced users: shallow but long
learning curve.

I Ideal for microcontrollers: native bitwise operations, procedural
code, distinction between int and float, robust exceptions.

I Lots of opportunities for optimisation (Python is compiled).

D.P. George MicroPython and IoT 9/19

Why can’t we use CPython? (or PyPy?)

I Integer operations:

Integer object (max 30 bits): 4 words (16 bytes)

Preallocates 257+5=262 ints −→ 4k RAM!

Could ROM them, but that’s still 4k ROM.

And each integer outside the preallocated ones would be another 16
bytes.

I Method calls:

led.on(): creates a bound-method object, 5 words (20 bytes)

led.intensity(1000) −→ 36 bytes RAM!

I For loops: require heap to allocate a range iterator.

D.P. George MicroPython and IoT 10/19

MicroPython: Python for microcontrollers

(and embedded systems, constrained environments, IoT, . . .)

D.P. George MicroPython and IoT 11/19

Crowdfunding via Kickstarter

Kickstarter is a good way to see if your idea has traction, or not.

I 30th April 2013: start!

I 17th September: flashing LED with button in bytecode Python.

I 21st October: REPL, filesystem, USB VCP and MSD on PYBv2.

1 weekend to make the video.

Kickstarter launched on 13
November 2013, ran for 30
days.

Total backers: 1,931
Total raised: £97,803 ($180k)

Officially finished 12 April 2015.

D.P. George MicroPython and IoT 12/19

Manufacturing

Jaltek Systems, Luton UK — manufactured 13,000+ boards.

D.P. George MicroPython and IoT 13/19

It’s all about the RAM

If you ask me ‘why is it done that way?’,
I will most likely answer: ‘to minimise RAM usage’.

I Interned strings, most already in ROM.

I Small integers stuffed in a pointer.

I Optimised method calls (thanks PyPy!).

I Range object is optimised (if possible).

I Python stack frames live on the C stack.

I ROM absolutely everything that can be ROMed!

I Garbage collection only (no reference counts).

I Exceptions implemented with custom setjmp/longjmp.

D.P. George MicroPython and IoT 14/19

GitHub and the open-source community

https://github.com/micropython

MicroPython is a public project on GitHub.

I A global coding conversation.

I Anyone can clone the code, make a fork, submit issues, make pull requests.

I MicroPython has over 3500 “stars” (top 0.02%), and more than 740 forks.

I Contributions come from many people (120+), with many different
systems.

I Leads to: more robust code and build system, more features, more
supported hardware.

I Hard to balance inviting atmosphere with strict code control.

A big project needs many contributors, and open-source allows such projects to
exist.

D.P. George MicroPython and IoT 15/19

And then went back for more...

Kickstarter #2 was a pure software campaign.

Finished on 2nd March 2016 with 1384 backers, £28,334 ($50k).

D.P. George MicroPython and IoT 16/19

Live Demo!

D.P. George MicroPython and IoT 17/19

MicroPython brings Python to resource-limited systems.

It allows rapid development of IoT applications.

Future development:

I continued development of ESP8266 port

I support for IoT: sensors, umqtt

I improved (micro)asyncio support

I optimise multithreading

I more features for the micro:bit, further ESA work

D.P. George MicroPython and IoT 18/19

micropython.org

forum.micropython.org

github.com/micropython

D.P. George MicroPython and IoT 19/19

