Living between two singularities

Damien P. George

with S.M. Aybat and M. Postma

Nikhef theory group Amsterdam, The Netherlands

Physics @ FOM Veldhoven — 19th January 2011

Physics beyond the standard model: *compact* extra dimensions.

- Constructing extra dimensional models with singularities.
- Why extra dimensions are useful.
- Stabilising the distance between singularities.
- Shielding the singularities.

Extra dimensions

 \boldsymbol{w} is extra space dimension, integrate it out to get 4D theory.

Separation of variables: $\Psi(x^{\mu},w) = f(w)\psi(x^{\mu}) \rightarrow \text{Kaluza-Klein modes.}$

Edge of the extra dimension

Need a way to "end" the extra dimension:

↔ infinite

- periodic
- ─ branes (hard walls)

Edge of the extra dimension

Need a way to "end" the extra dimension:

↔ infinite

- periodic
- branes (hard walls)

Or: a singularity.

Edge of the extra dimension

Need a way to "end" the extra dimension:

- ↔ infinite
 - \dashv branes (hard walls)
- Or: a singularity.

$$ds^{2} = e^{-2\sigma(w)}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dw^{2}.$$

- R, σ diverge at edge.
- Line of singularity: soft wall.

NI

D.P. George

Living between two singularities

Soft walls

- Line of singularity supported two scalar fields: dilaton and kink.
- Space is repeated.
- Integrated energy density is zero (cosmological constant is zero).
- Can escape from singularity.

Use of extra dimensions

- Electroweak hierarchy: $M_{\text{Planck}} \xrightarrow{\text{redshift}} M_{EW}$.
- Mass hierarchy and couplings set by overlap integrals.

Stabilising the extra dimension

Electroweak scale (and other things) set by size of extra dimension.

 \rightarrow stabilise distance between singularities.

Odd kink and even dilaton:

- massless 4D particle (zero mode/moduli field),
- exciting this particle changes size of extra dimension!

Odd kink and odd dilaton:

NINEF

- parity banishes the massless 4D particle,
- distance between singularities stabilised.

D.P. George

Shielding the singularity

Geodesics end at singularity.

Can go in *and* come out.

Quantum gravity unknown \rightarrow unable to predict what comes out, \rightarrow must shield singularities.

Try to create a black-hole-like horizon.

Shielding the singularity

Line of horizon shields line of singularity: $ds^{2} = e^{2\sigma(w)} \left[-h(w)dt^{2} + d\vec{x}^{2}\right] + h(w)^{-1}dw^{2}$ $h'(0^{+}) = \frac{1}{2}(1+w)\rho_{\text{brane}}$ Sign of $h'(0^{+})$:

 \rightarrow need ghost matter on brane at origin!

Shielding the singularity

Line of horizon shields line of singularity: $ds^{2} = e^{2\sigma(w)} \left[-h(w)dt^{2} + d\vec{x}^{2}\right] + h(w)^{-1}dw^{2}$ $h'(0^{+}) = \frac{1}{2}(1+w)\rho_{\text{brane}}$ Sign of $h'(0^{+})$:

Plan B: place singularities "infinitely" far away:

- Finite physical distance w_{*}.
- Infinite time for particles to reach singularity: $t = \int_0^{w_*} e^{\sigma(w)} dw$.
- Puts tighter constraints on parameters of the model.
- Can still solve the hierarchy problem.

Conclusions

- Integrate out the extra dimension: 5D → 4D.
- Singularities at edges.
- Supported by scalar fields.
- Solve EW hierarchy problem.
- Stabilise by parity.
- Shield by placing them "infinitely" far away.

Randall-Sundrum warped metric:

Randall & Sundrum, PRL 83, 3370 (1999)

Original soft-wall motivation (AdS/QCD and linear Regge trajectories):

Karch, Katz, Son & Stephanov, PRD 74, 015005 (2006)

Continued work on soft-wall models:

- Batell & Gherghetta, PRD 78, 026002 (2008)
- Falkowski & Perez-Victoria, JHEP 12, 107 (2008)
- Batell, Gherghetta & Sword, PRD 78, 116011 (2008)
- Cabrer, von Gersdorff & Quiros, arXiv:0907.5361
- Aybat & Santiago, PRD 80, 035005 (2009)
- Aybat & DPG, JHEP 09, 010 (2010)