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Introduction

We are inspired by the Randall-Sundrum warped metric solution.

RS1 is a compact extra dimension: provides a solution to the hierarchy
problem – lots of work on this model. Branes are string theory like
objects. Warped throats, inflation, dark matter, ...

RS2 is an infinite extra dimension: solves the trapping of low-energy
gravity. Not as much interest because it doesn’t solve any major
problems, just introduces another dimension.

We will pursue RS2 because it seems a natural extension of 3+1 space.

Most work done in collaboration with:
Ray Volkas (Melbourne U) and Rhys Davies (Oxford U).
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(Mem-)Brane worlds



Brane worlds

Premise:

take the standard model and general relativity
add an infinite extra space dimension
recover the standard model and general relativity at low energies

S =
∫
d4x

∫
dy
√
|g|
[
−M3R

+ δ(y)LSM

]
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RS2 model

Need brane and bulk sources:

S =
∫
d4x

∫
dy

[√
|g|(−M3R− Λbulk) +

√
|g(4)|δ(y)(LSM − Λbrane)

]
(1)

Solve the theory:

Randall-Sundrum metric ansatz: ds2 = e−2k|y|g
(4)
µν dxµdxν − dy2

Solve Einstein’s equations (LSM = 0 and R(4) = 0):

Λbulk = −12k2M3 Λbrane = 12kM3

Write R in terms of R(4): R = e2k|y|R(4) − 16kδ(y) + 20k2

Substitute into (1) and integrate over y:

S =
∫
d4x
√
|g(4)|

[
−M

3

k
R(4) + LSM

]
A dimensionally reduced theory.
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Newton’s law

Just need to check Newton’s law. Linear tensor fluctuations are:

gµν = e−2k|y|ηµν +
∑

n

h(4)
n µν(x

µ)ψn(y)

The zero mode h
(4)
0 µν dominates the Kaluza-Klein tower.

Newton’s law is modified to:

V (r) = −GN
m1m2

r

(
1 +

ε2

r2

)
(where ε = 1/k)

Current experimental bounds are very weak:

ε < 12µm =⇒ k > 16× 10−3eV

We have what we wanted: a 5D
theory that at low energies looks like
our 4D universe.

But almost no new phenomenology.

Next step: brane forms naturally.
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Thick and smooth RS2

We want to remove the δ(y) part of the action:

S =
∫
d4x

∫
dy

[√
|g|(−M3R− Λbulk) +

√
|g(4)|δ(y)(LSM − Λbrane)

]

Everything from now on is one way of doing that.

Geometry, hence gravity, is 5D. So why not try to make all fields 5D?

First we show how to make a dynamical brane.

Then we show how to trap scalars, fermions and gauge fields to the
brane.

Finally we present a 4+1-d SU(5) based extension to the standard
model.

Turn off warped gravity for now – just think about trapping 5D fields.
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A domain-wall as a brane

Idea: imagine the Higgs VEV had one value here, another there.

The interface is a
domain-wall.

V = λ(φ∗φ− v2)2

This is unstable – vacua can be
continuously deformed to each
other.

(key: real,imaginary)
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Disconnected degenerate vacua

-v +v

V
(φ

)

φ

We need a potential with disconnected
and degenerate vacua:

V = λ(φ2 − v2)2

with φ now a scalar.

Lagrangian for φ(xµ, y):

L =
1
2
∂Mφ ∂

Mφ− V (φ)

A solution is the kink:

φ(y) = v tanh(
√

2λvy)

It is stable!
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More complicated domain-walls

These examples use two scalar fields to form the wall.

V = λ1(φ2
1 +φ2

2− v2)2 + λ2φ
2
1φ

2
2 V = λ(φ2

1+φ
2
2−v2

1)
2(φ2

1+φ
2
2+v

2
2)

In a realistic model, symmetries dictate V .

To determine stability, expand φ in normal modes about the background:
φ(x, t) = φbg(x) +

∑
n ξn(x)eiωnt. Make sure ω2

n ≥ 0
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Trapping matter fields



Trapping scalar fields

Aim: to trap a 5D scalar field Ξ(xµ, y) to the brane.

A simple quartic coupling works:

S =
∫
d4x

∫
dy

[
1
2
∂Mφ ∂Mφ− V (φ) +

1
2
∂MΞ ∂MΞ−W (Ξ)− gφ2Ξ2

]

Expand Ξ in extra dimensional (Kaluza-Klein) modes:

Ξ(xµ, y) =
∑

n

ξn(xµ)kn(y)

ξn are the 4D fields, kn their extra-dimensional profile. The profiles
satisfy a Schrödinger equation:(

− d2

dy2
+ 2gφ2

bg

)
kn(y) = E2

nkn(y)

The energy eigenvalues En are related to the mass of the 4D field ξn.
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Trapping via a potential well

The effective potential acts like a well.
(
− d2

dy2 + 2gφ2
bg

)
kn = E2

nkn

-3 -2 -1  0  1  2  3

ef
fe

ct
iv

e 
po

te
nt

ia
l

extra dimension y

-3 -2 -1  0  1  2  3

k n
 p

ro
fil

e

extra dimension y

To get 4D theory, substitute mode expansion into action and integrate y:

S =
∫
d4x

[∑
n

(
1
2
∂µξn∂µξn −m2

nξ
2
n

)
+ (higher order terms)

]

Orthonormal basis kn =⇒ diagonal kinetic and mass terms.

mn can be tuned.
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Trapping fermions

We can trap a fermion Ψ(xµ, y) to the brane with a Yukawa coupling:

S =
∫
d4x

∫
dy

[
1
2
∂Mφ ∂Mφ− V (φ) + ΨiΓM∂MΨ− hφΨΨ

]

Decompose into left- and right-chiral fields and Kaluza-Klein modes:

Ψ(xµ, y) =
∑

n

[ψLn(xµ)fLn(y) + ψRn(xµ)fRn(y)]

Schrödinger equation (mode index n suppressed):(
− d2

dy2
+ (h2φ2

bg ∓ hφ′bg)
)
fL,R(y) = m2fL,R(y)

 0

-3 -2 -1  0  1  2  3

ef
fe

ct
iv

e 
po

te
nt

ia
l

extra dimension y

L
R  0

 2

 4

 6

 8

 10

-3 -2 -1  0  1  2  3

re
la

tiv
e 

m
od

e 
en

er
gy

extra dimension y

fLn profile

-3 -2 -1  0  1  2  3

extra dimension y

fRn profile
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Gravity and matter fields

Brane (domain-wall/kink), trapped scalar and fermion. Plus gravity:

S =
∫
d4x

∫
dy
√
|g|
[
−M3R− Λbulk +

1
2
∂Mφ ∂Mφ− V (φ)

+
1
2
∂MΞ ∂MΞ−W (Ξ)− gφ2Ξ2

+ ΨiΓM∂MΨ− hφΨΨ
]

Dimensionally reduce by integrating over y:

S =
∫
d4x
√
|g(4)|

[
−M2

4DR
(4) + (brane dynamics)

+
1
2
∂µξn∂µξn −m2

nξ
2
n − τmnopξmξnξoξp − (brane interactions)

+ ψL0iγ
µ∂µψL0 + ψn(iγµ∂µ − µn)ψn − (brane interactions)

]
4D parameters (M4D, mn, τmnop, µn, brane dynamics) determined by
eigenvalue spectra and overlap integrals.
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Warped matter

Warped metric ds2 = e−2σ(y)ηµνdx
µdxν − dy2 modifies profile equation:(

− d2

dy2
+ 5σ′ d

dy
+ 2σ′′ − 6σ′2 + U(y)

)
fLn(y) = m2

ne
2σfLn(y)

Conformal coordinates ds2 = e−2σ(y(z))(ηµνdx
µdxν − dz2).

Rescale fLn(y) = e2σf̃Ln(z):(
− d2

dz2
+ e−2σ(y(z))U(y(z))

)
f̃Ln(z) = m2

nf̃Ln(z)

Matter trapping potentials are warped down.

Finite bound
state lifetimes.

Resonances.

Tiny probability
of interaction
with continuum.
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(a ∼ 1/M3 ∼ 5D Newton’s constant)
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Trapping gauge fields



Confining gauge fields

Need to trap gauge fields or e.g. Coulomb potential would be
VCoulomb ∼ 1/r2.

Not as simple as a Kaluza-Klein mode expansion:

Photon and gluons must remain massless.

Need to preserve gauge universality at 3+1-d level.

We use the Dvali-Shifman mechanism, following an argument due to
arXiv:0710.5051 (Dvali et al).
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Abelian Higgs model

U(1) gauge theory, charged Higgs χ:

S =
∫
d4x

∫
dy

[
−1
4g2

FMNFMN +
1
2
(DMχ)†DMχ− (|χ|2 −M2

χ)2
|χ|2

M2
χ

]

0

Mχ

|χ
|

extra dimension

U(1)

superconductor superconductor

In the bulk:

U(1) is broken, massive photon ∼Mχ.

Higgs vacuum is a superconductor.

Electric charges are screened.

On the brane:

U(1) is restored, massless photon.

Electric field ends on Higgs vacuum.

Charge screening leaks onto the brane!
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Using a dual superconductor

SU(2) gauge theory, adjoint Higgs χa (a = 1, 2, 3):

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
(DMχa)†DMχa − (χaχa −M2

χ)2
χaχa

M2
χ

]

0

Mχ

|χ
|

extra dimension

U(1)SU(2) SU(2)

dual
superconductor

dual
superconductor

In the bulk:

SU(2) is restored, in confining regime.

Large mass gap ∼Mχ to colourless state.

QCD-like vacuum is dual superconductor.

On the brane:

SU(2) broken to U(1), massless photon.

Electric field repelled from dual
superconductor.

For distances much larger than brane width,
electric potential ∼ 1/r.
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Dvali-Shifman model

Stabilise the domain-wall with an extra uncharged scalar field η:

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
∂Mη∂Mη +

1
2
(DMχa)†DMχ

a

− λ(η2 − v2)2 − λ′

2
(χaχa + κ2 − v2 + η2)2

]
η has a kink profile.

If κ2 − v2 < 0, χ becomes
tachyonic near domain-wall
(where η ∼ 0).

True vacuum has χ 6= 0 near
domain-wall.

χ breaks symmetry near wall
and confines gauge fields.

-v

0

v

fi
el

d 
pr

of
ile

extra dimension y

η
χ

Can add gravity: self consistently solve σ (warped metric profile), η, χ.
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Dvali-Shifman mechanism

The Dvali-Shifman mechanism:

Works with any non-Abelian SU(N) theory.

Assumes the SU(N) theory is confining (not proven for 5D).

Has gauge universality:

Charges in the bulk are connected to the brane by a flux tube.
Coupling to gauge fields is independent of extra dimensional profile.

Obvious choice for SU(N) group is SU(5).
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Aside: The standard model and SU(5)



Quantum numbers of the standard model

Representations under SU(3)× SU(2)L × U(1)Y :

qL ∼ (3,2)1/3 uR ∼ (3,1)4/3 dR ∼ (3,1)−2/3

lL ∼ (1,2)−1 νR ∼ (1,1)0 eR ∼ (1,1)−2

A 4D combined weight diagram:

U(1)Y

SU(2)L

νR

νL

eR

eL

uR

uL

dR

dL

νL

νR

eL

eR

uL

uR

dL

dR
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Spanning the diagram

With the right basis vectors, we can span this space (Z2 coefficients).

U(1)Y

SU(2)L

νL

dR

νR

eR
uL

dL

eL
uLeR

uR

uR

dR
νL

eL

dL
νR
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Multiplets of SU(5)

Take the basis vectors as the 5 of SU(5):

νR

νL

eR

eL

uR

uL

dR

dL

νL

νR

eL

eR

uL

uR

dL

dR

Anti-symmetric products of the 5 give:

1 νL

5∗ d
r,w,b
L νL eL

(5× 5)A = 10 ur,w,b
L ur,w,b

L dr,w,b
L eL
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Putting it all together



The SU(5) model

Want the standard model on the brane: SU(3)× SU(2)L × U(1)Y .

Dvali-Shifman needs a larger gauge group in the bulk:

SU(5) is a perfect fit!

Unify the fermions as usual: 5∗, 10.
Higgs doublet goes in a 5∗.

Summary:

4 + 1-dimensional theory – all spatial dimensions the same.

SU(5) local gauge symmetry, Z2 discrete symmetry.

Field content:

gauge fields: GMN ∼ 24.
scalars: η ∼ 1, χ ∼ 24, Φ ∼ 5∗.
fermions: Ψ5 ∼ 5∗, Ψ10 ∼ 10.

The standard model emerges as a low energy approximation.

Ignore gravity for now.
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The action (without gravity)

The theory is described by:

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
∂Mη∂Mη + Tr

(
(DMχ)†(DMχ)

)
+ (DMΦ)†(DMΦ) + Ψ5iΓMDMΨ5 + Ψ10iΓMDMΨ10

− h5ηΨ5Ψ5η − h5χΨ5χ
T Ψ5

− h10η Tr(Ψ10Ψ10)η + 2h10χ Tr(Ψ10χΨ10)

− h−(Ψ5)cΨ10Φ− h+(ε(Ψ10)cΨ10Φ∗) + h.c.

− (cη2 − µ2
χ) Tr(χ2)− dηTr(χ3)

− λ1

[
Tr(χ2)

]2 − λ2 Tr(χ4)− l(η2 − v2)2

− µ2
ΦΦ†Φ− λ3(Φ†Φ)2 − λ4Φ†Φη2

− 2λ5Φ†Φ Tr(χ2)− λ6Φ†(χT )2Φ− λ7Φ†χT Φη
]

with kinetic, brane trapping, mass and Dvali-Shifman terms.
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Split fermions

Let ΨnY be the components of Ψ5 and Ψ10 (n = 5, 10, Y = hypercharge
of component), e.g. Ψ5 ⊃ Ψ5,−1 = lL. Dirac equation:[

iΓM∂M − hnηη(y)−
√

3
5
Y

2
hnχχ1(y)

]
ΨnY (xµ, y) = 0

Each ΨnY is a non-chiral 5D field: need to extract the confined
left-chiral zero-mode (recall the mode expansion and Schrödinger
equation approach):

ΨnY (xµ, y) = ψnY,L(xµ)fnY (y) + massive modes

The effective Schrödinger potential
depends on Y .

Thus each component ψnY,L has a
different profile fnY .

f 5
 Y

dc
L

lL

-6 -4 -2  0  2  4  6

f 1
0 

Y

dimensionless coordinate ky

ec
L

uc
L

qL
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Split Higgs

Φ contains the Higgs doublet Φw and a coloured triplet Φc. Mode
expand Φw,c(xµ, y) = φw,c(xµ)pw,c(y). Schrödinger equation for pw,c is:(

− d2

dy2
+

3Y 2

20
λ6χ

2
1 +

√
3
5
Y

2
λ7ηχ1 + . . .

)
pw,c(y) = m2

w,cpw,c(y)

Critical that ground states have:

m2
w < 0 to break electroweak symmetry.

m2
c > 0 to preserve QCD.

Large enough parameter space
to allow this.

-6 -4 -2  0  2  4  6

W
Y

dimensionless coordinate ky

W-1
W2/3
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Features

Standard model parameters are computed from overlap integrals.

With one generation of fermions, parameters are easy to fit.

The model overcomes the major SU(5) obstacles:

me = md not obtained due to naturally split fermions.

Coloured Higgs induced proton decay is suppressed.

Gauge coupling constant running modified due to Kaluza-Klein
modes appearing (not analysed yet).

Adding gravity:

Solve for warped metric, kink and Dvali-Shifman background.

Continuum fermion and scalar modes are highly suppressed on the
brane.

Main features remain.
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Future work and extensions

Future work:

Understand confinement of SU(N) in 5D.

Three families with full parameter fitting.

Neutrino masses and mixings.

Brane cosmology.

One promising extension is to the E6 group:

E6 → SO(10) in the bulk.

SO(10) → SU(5) on the brane due to
clash-of-symmetries and Dvali-Shifman.

Can eliminate kink scalar field η.

Can unify Ψ5 and Ψ10.

Large reduction of free parameters. fE

fX

(10,+)(10,–)

(10´,+)

(10´,–)
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