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Compact extra dimensions

Physics beyond the standard model: compact extra dimensions.

metric

warp

factor

-ve

brane
+ve

brane

-ve

brane
soft

wall

+ve

brane

soft

wall

Randall-Sundrum hard wall → RS soft-wall models.

Original soft-wall motivation: AdS/QCD and linear Regge trajectories.
Karch, Katz, Son & Stephanov, PRD74, 015005 (2006)

Now exist early BSM models.
Batell & Gherghetta, PRD78, 026002 (2008), Falkowski & Perez-Victoria, JHEP 12, 107 (2008),
Batell, Gherghetta & Sword, PRD78, 116011 (2008), Cabrer, von Gersdorff & Quiros, arXiv:0907.5361,
Aybat & Santiago, PRD80, 035005 (2009).
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Branes: you don’t need them!

“Can’t you give me brains?” asked the Scarecrow.

“You don’t need them!” replied the Wizard.

Our aim: replace the brane with a domain wall.
→ Must ensure stability.

Work based on arXiv:1006.2827, with Mert Aybat.
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General set-up; background configuration

General framework: GR with N scalar fields:

S =
∫
d4x dy

[√
−g
(
M3R+ Lmatter

)
−
√
−g4λ

]
,

with

Lmatter = −1
2

∑
i

gMN∂MΦi∂NΦi − V ({Φi}) ,

λ = λ({Φi}) =
∑
α

λα({Φi})δ(y − yα) .

Background ansatz: ds2 = e−2σ(y)ηµνdx
µdxν + dy2, Φi(xµ, y) = φi(y).

Einstein’s and Euler-Lagrange equations:

6M3σ′′ =
∑

i

φ′2i + λ({φj}) , 6M3(σ′′ − 4σ′2) = 2V ({φj}) + λ ({φj}) ,

φ′′i − 4σ′φ′i − Vi({φj})− λi({φj}) = 0 . (σ′ = dσ/dy, Vi = ∂V/∂Φi etc.)

{V , λ, integration constants} define a configuration.
Is it stable in the space of configurations?
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Perturbative stability

Perturb the background configuration → eigenvalue problem.

E > 0 E = 0
E < 0

Spin-0 and spin-2 perturbations described by:

ds2 = e−2σ [(1− 2F (xµ, y)ηµν + hµν(xµ, y)] dxµdxν + [1 + 4F (xµ, y)] dy2,

Φi(xµ, y) = φi(y) + ϕi(xµ, y) .

(Axial gauge hµ5 = 0, transverse traceless ∂µhµν = ηµνhµν = 0.)

Degrees of freedom:

Spin-2: hµν decouples from F and ϕi. Is non-tachyonic. Has a zero
mode (4D graviton). Known RS2 result.

Spin-0: Non-trivial. Physical modes are mixtures of F and ϕi.
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Spin-0 perturbations

For spin-0, the equations to solve are (� = ∂µ∂µ):

6M3(F ′ − 2σ′F ) = φ′iϕi ,

6M3(−e2σ�F − 2σ′F ′ + F ′′) = 2φ′iϕi
′ + 2 λ|bg F + λi|bg ϕi ,

e2σ�ϕi + ϕi
′′ − 4σ′ϕi

′ − 6φ′iF
′ − (4Vi + 2λi)|bg F − (Vij + λij)|bg ϕj = 0.

We can do it! Go to conformal coordinates (dy = e−σdz), rescale fields:

F (y) = 1√
12
e3σ/2χ(z(y)) , ϕi(y) = M3/2e3σ/2ψi(z(y)) .

Massage into a familiar form:

−χ′′ + (V00 + B00)χ+ (V0i + B0i)ψi = �χ ,

−ψi
′′ + (V0i + B0i)χ+ (Vij + Bij)ψj = �ψi .

where Bmn contain brane-only terms, and

V00 = 9
4σ

′2 + 5
2σ

′′ , V0i = 2√
3M3

φ′′i ,

Vij =
(

9
4σ

′2 − 3
2σ

′′) δij + 1
M3φ

′
iφ

′
j + e−2σ Vij |bg .

D.P. George Stability of gravity-scalar systemsfor domain-wall models with a soft wall 6/16



Fake supergravity

We now specialise to potentials V ({Φi}) generated using the fake
supergravity approach (no branes):

V ({Φi}) =
∑

i

1
2

[Wi({Φi})]2 −
1

3M3
[W ({Φi})]2 .

DeWolfe, Freedman, Gubser & Karch, PRD62, 046008 (2000)
Freedman, Nunez, Schnabl & Skenderis, PRD69, 104027 (2004)

For any W , solutions to Einstein’s and Euler-Lagrange are:

σ′ = 1
6M3W ({φi}) ,

φ′i = Wi({φi}) .

This is a set of first order equations:

W encodes for V and half of the integration constants.

Can take σ(y0) = 0 without loss of generality.

Have N integration constants left: set of values {φi(y0)}.

{W,φi(y0)} uniquely define a configuration. Is it stable?
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Perturbative stability in fake SUGRA approach

Recall, for general V perturbations obey

−
(
χ
ψi

)′′
+
(
V00 V0j

V0i Vij

)(
χ
ψj

)
= �

(
χ
ψi

)
.

Using fake SUGRA, we find that V = S2 + S ′, where

S = e−σ

(
1

12M3W
1√

3M3Wj
1√

3M3Wi − 1
4M3 δijW +Wij

)∣∣∣∣∣
bg

.

Write Ψ = (χ, ψi)T . Perturbations obey (∂z + S)(−∂z + S)Ψ = �Ψ.

Fourier transform on xµ, multiply by Ψ† on left and integrate:∫
|(−∂z + S)Ψ|2 dz + (boundary terms) = E

∫
|Ψ|2dz .

Boundary terms vanish for warped metric. We find E ≥ 0.

What about E = 0? Such modes can correspond to changes in the size
of the compact extra dimension.
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N = 1 systems

With N = 1 scalar, can use constraint Einstein equation to eliminate ψ1

in terms of χ. Then redefine χ = S01g.

Schrödinger-like equation for g is factorisable:

(∂z − S11)(−∂z − S11)g + S2
01g = Eg .

(Recall: S01 = 1√
3M3 W1, S11 = − 1

4M3 W + W11.)

Multiply by g and integrate:∫
|(−∂z − S11)g|2 dz +

∫
|S01g|2 + (boundary terms) = E

∫
|g|2dz .

For warped metric, boundary terms vanish. Then for E = 0 require:

(−∂z − S11)g = 0.

S01g = 0.

Systems with N = 1 do not have a zero mode.
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N = 2 and the zero-mode theorem

For N = 2 there may or may not be a zero mode.

Theorem: For a system of definite parity with N scalar fields that
couple to gravity, the number of independent normalisable zero modes
with E = 0 is at most equal to the number of fields whose background
solutions are even.

Proof: If a zero mode exists, adding it to the background takes you to
another background, generated using the same superpotential but with
different integration constants. (Recall: σ′ = 1

6M3W , φ′i = Wi.)

Zero modes ↔ available integration constants.

No integration constants =⇒ no zero modes.

Look at some examples with N = 2 scalars.
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Domain-wall models with a soft wall

Branes, soft walls and domain walls.
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Our domain-wall model is specified by

S =
∫
d4x dy

√
−g

M3R−
∑

i=1,2

1
2g

MN∂MΦi∂NΦi −
∑

i=1,2

1
2W

2
i + 1

3M3W
2

 .
Φ1, the dilaton: diverges at finite y to create a soft wall.

Φ2, the domain wall: has a kink profile to provide energy density at
the origin.

σ, the warp factor: diverges at finite y.
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Example N = 2 even system — unstable

Φ1 is even, Φ2 is odd, σ is even.

Superpotential: W (Φ1,Φ2) = eνΦ1
(
aΦ2 − bΦ3

2

)

Φ1 is even:
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(ν = 1.4, a = 0.5, b = 0.3)

For this case, we have found the explicit solution for the zero mode.
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Example N = 2 odd system — stable

Φ1 is odd, Φ2 is odd, σ is even.

Superpotential: W (Φ1,Φ2) = α sinh(νΦ1) +
(
aΦ2 − bΦ3

2

)
Φ1 and Φ2 are odd:

no integration constants
to choose

background solution is
unique

no zero modes

size of extra dimension
fixed by parameters in W
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(α = 1, ν = 1.4, a = 0.5, b = 0.3)

An example of a domain-wall model with a soft wall, that
stabilises the size of a compact extra dimension.
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The hierarchy problem in domain-wall soft-wall models

Superpotential: W (Φ1,Φ2) = α sinh(νΦ1) +
(
aΦ2 − bΦ3

2

)
Characteristic scale: zsize = size of extra dimension in conformal coordinates.

Bulk fields KK mass scale: mKK ∼ z−1
size.

Hierarchy problem solved if zsize ∼ 1016 for O(1) model parameters.

For a = b = 1, need α ' 0.02 ν ' 1.0.
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(α = 0.01 . . . 1.0, ν = 1.0 . . . 1.4, a = 1, b = 1)
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Application to AdS/QCD

Model QCD by a 5d theory.

Having a soft wall in the IR yields linear Regge trajectories: meson
excitations m2

n ∼ n.

Dynamically generate the 5d background: use dilaton and tachyon.
Batell & Gherghetta, PRD78, 026002 (2008)

Scalar fluctuations correspond to glueball and scalar meson excitations.

Superpotential approach is common in literature. Using our results, can
compute the scalar spectrum with multiple background fields.
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Summary and future work

Branes: not necessary!

We can have a stable, compact extra dimension:

Soft-wall at edge of space; replaces negative
brane.

Domain-wall at origin; replaces positive brane.

Additional scalar (dilaton) cuts off space.

Lesson: using fake SUGRA, need definite parity and all scalars must be
odd to eliminate zero modes.

Technical questions:

No fake SUGRA: can we have even fields?

Odd fields, but not definite parity: are there zero modes?

Most interesting questions:

Can we solve the hierarchy problem? Improve upon α ∼ 0.02.

Can we build a realistic standard model?
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