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The Lagrangian and symmetries

Describe our universe by a Lagrangian.
L = quarks + leptons + photons + gluons + W + Z + ...
= kinetic — potential
=¢? — (V)2 = \p? — 0™ + ... + iy O + . ..
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u(1) L

Lie-point symmetry method — find symmetries of a Lagrangian L.



A 7, symmetry
Epenguin = ‘ + AX i

increasing A
_

A =1 has a Z; reflection symmetry: ‘ <—>i



A continuous U(1) symmetry

The Lie point symmetry method finds continuous symmetries.

= (O

adjust the path to a circle

With correct parameters, obtain a U(1) rotation symmetry.
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Systematically find all symmetries of a model,
— derive parameter relationships that give enhanced symmetries,
— even if symmetry is spontaneously broken.
Overview:
m The Lie point symmetry method.
m Examples: 2 scalars, N scalars.
m Spontaneous symmetry breaking.
m Gauge symmetries.
m Automation.

m The standard model.



The Lie point symmetry method

The Lie point symmetry method consists of finding the determining
equations, whose solutions describe infinitesimal symmetries, and then
solving these equations.

Derive the determining equations of the system.
Coordinates x* and fields ¢;;

Solve the determining equations, or at least reduce to a standard
form. Solution set can branch depending on parameter values (e.g.
m =0, mi = ma).

Compute the rank (number of generators) of the symmetry set(s).

(Optional) Compute the finite action of the symmetries.



Variation of the action

The action: S = [ L(¢) dx
Infinitesimal point variations:

ot — 2t + ' (x, ¢)
bi — ¢i + xi(x, ¢)

S — S+ 48 should be unchanged.

Solve for the fields — Euler-Lagrange equations: ngi -0y (6(3—:;1,» =0.

Form a divergence — Noether's theorem: 9, [ﬁn +6(6H¢Z)(xz 1" O, i )]



Variation of the action

Many kinds of variations:

604

Solve 4§ = 0 for the infinitesimals — master determining equation:

M—FE #_‘_% + oL dXi_aqj)ing —
Azt Gzn! 0p; Xi O(Oudi) \dat  Oxvdar)

ivative: -4 = & 4 06 &
(Total derivative: 357 = 525 + 58 e )

Solving this tells you the symmetries.




The Lie point symmetry method

The LPS method is general and powerful:
m an exhaustive search of continuous symmetries;
m yields all interesting relationships between parameters;

m finding the rank (number of symmetries) is guaranteed to terminate
in finite time, determined by the number of coordinates and number
of fields;

m applicable to any set of differential equations
(coordinates=independent-variables, fields=dependent-variables).



Example: two scalars

Only field symmetries, ¢; — ¢; + xi(¢;).

Master determining equation
oL oL  0¢; Oy

96 ' T 0(@u0n) 0 06;

Apply to Lagrangian

1
c——%la ¢1 + a“¢26,,,¢2 m1¢>1 m%¢%.

Differentiation is all you need! Determining equation is

0
—mig1x1 — m3paxa + O h10,1 321
o X1 | 4u X2 | o Ixa2 _
+ 0 <Z513u¢2 90 +0 ¢28u¢1 901 +0 ¢28u¢2 90 =0.

Treat as polynomial in J¢.



Example: two scalars

Determining equations:
8X1 aXl 6X2 6)(2
mmign —midne =0, GI=0. GotGi =0 5=

General solution to last three equations:
X1(¢2) = a1 + P2, x2(91) = a2 — B .
Symmetries:
m «1: shift of ¢;.

m o shift of ¢s.
m [3: rotation between ¢ and ¢o.

Final determining equation is
armigy + aamidy + B(mF — m3)drge = 0.

— the model parameters dictate the symmetries.



Example: two scalars

Recall the Lagrangian

1 1 1 1
L= 56“(;518/#)1 + 55“¢23p¢2 - §m%¢% - §m%¢% .

General solution for symmetries
¢1 — ¢1 with @) = x1 = a1 + (2
¢2 — g2 with ¢y = x2 = az — B¢
Final algebraic determining equation
armir + asmigy + H(mf —m3)érds = 0.

m m; =0 allows oy # 0, symmetry ¢ = ¢ + ae.

m my = 0 allows ap # 0, symmetry ¢y = ¢o + ae.

m m? =m3 allows 3 # 0. The symmetry is

1 ([ cosPBe sinfPe) (o1
d2)  \—sinfe cosfBe) \¢pa) -



Solving the determining equations

We have seen how to find and solve the determining equations, and find
parameter relationships.

| symmetries
model |~ dEtermining | . _ | symmetries’
equations | |
parameter | symmetries”
choice!

L= _i-l— A X i AL, a Z4 reflection symmetry

mi=mo U(1) rotation
e
symmetry

L =(091)" + (0¢2)* — mig] — m3¢)




N interacting scalar fields

Symmetries dictated by structure of interactions between fields.

General Lagrangian for N spin-0 fields
L= 310"p;0.0; — V().

Determining equations

oV
M =
Va:u'n + a(ﬁz Xl 0 1)
o .
oy B
Pxi=Vog,m =0 vu¥i, (x = X(9)
" +0"n" =0 VuVu, p#v, (Poincaré)
o | O _ A _
Do, a¢i =0 Vivi, i#7, (shift, rot.)
Lo —oumi+ 220 wpvi I
2 o'l Al 3d) e, (scaling)
on" . -
9 0 TRV (n=n(x))



N interacting scalar fields

General Lagrangian
L= 210"p;0,0; — V(9).
For D # 2 the general coordinate symmetries are (b anti-symm)
nt(x) = a" + " 2" + cat.
General field symmetries are ((3;; anti-symm)

2—-D
Xi(¢) = ai + Bijd; + 5 CPi-

Remaining determining equation is
2—-D
2

ov
DcV + — (Ozi + Bijo; + C(bl) =0.

telon

Form of V'« allowed symmetries.



Symmetries of one scalar

Specialise to N = 1:

dv 2—-D
DCV-I_d_qb( 5 c )—

Four distinct cases:
V' =0: a and c free. Independent shift and scale symmetries.
Rank associated with field is R, = (2).

V' = const: ¢ =0 but « free.
Field rank R, = (1).

Ao+ U)D 2. Solve above differential equation.
Given v, relationship between shift and scale symmetry is
fixed by v = 2a/(2 — D)c.
Field rank R, = (1).
V" arbitrary: @ = ¢ = 0. No shift or scale symmetry.
Field rank R, = (0).



Symmetries of two scalars

DcV—l—% (a1 + B2 + 2 _2DC¢1)+37‘; (a2 — B +

Go to polar field variables, ¢1 = r cos 8, ¢o = rsin6:

C¢2) =

1 1
L= 50"r0ur + 7“256"6’8“0 —V(r,0).

Determining equation is

oV
DcV+— <a1 cosf + oo sin 6 +

2—-D ) ov ( sin cos
—ecr o —— — Qy
or

5 _W +ﬂ>=0.

A solution:

V(r,8) =\ (rk - vew)m

Parameters related: mk =2D/(D — 2).
Symmetries related: (2 — D)kc = 2I[.
Acts as: 7 — e/kr 9 — 0 + 3, xt — eCat,




Equations of motion approach

Distinction between the symmetries of action and symmetries of
corresponding equations of motion.

GG a symmetry of an action = G also a symmetry of the
Euler-Lagrange equations. Converse not necessarily true.

Denote the system by Aj(z#, ¢;, 0¢;) = 0.
Construct the prolonged symmetry operator pr(®) o

0 0
a = 778_+X1

Prolongation extends « to include all possible combinations of
derivatives of ¢, to order k.

Apply prl®) o to the system: (prl®) ac- A)|a—g = 0.

Equate all independent coefficients to zero — determining equations.



Equations of motion example

System defined by Euler-Lagrange equation ¢ — ¢ +m2¢ = 0.
What are its symmetries?
B m =0 has
n'(tw) = Fi(t+a) + F(t —2),
ni(t ) = Fi(t+z) - F(t—2)+ [,
Xtz ¢) =G (t+2)+G_(t—2)+ 96t x).

() =a' +ba,
n*(t) = a® + bt

+o0 . .
x(t,z,¢) = / i | Hy (k) €4 4 (k) 78| 4 g (2, )

—00

where w = VEk2 + m?2.
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Remarks on the LPS method

The LPS method provides an exhaustive list of symmetries and
parameter relationships that yield an enhanced symmetry.

. determining :
/| action |4> equations | symmetries
. determinin S,
\| E-L equat|0n5| - equationsg — | symmetries

Any spin representation, or even particles that do not respect Lorentz
symmetry, can be written in terms of real fields.
Any action can be expanded in terms of its real components.

The LPS method works for all continuous symmetries that depend on the
coordinates and fields (but not derivatives of the fields).

Includes local gauge symmetries as well as general relativity.
Supersymmetry: requires introduction of anti-commuting coordinates.

Works for non-linear symmetries and spontaneously broken symmetries.



Spontaneously broken symmetries

Spontaneously broken scale symmetry:
V = A¢? has scale symmetry.
V = A(¢ +v)?* has shift-scale-shift symmetry.

V = X% + ¢3 —v?)? has U(1).
Define ¢ = v + ¢.

V = M¢? + p? + 2vp)? has shift-U(1)-shift.

LPS method will find symmetry, no matter how broken/hidden it may be.

For example, solve for relationships between ¢; in

V = c1 + cag1 + e + cad] + c5d1d2 + cods + c1dt + csdida + cod1ds
+ c1003 + 1197 + c1285 b2 + 130703 + crab1 By + ci505 -



Spin-1 plus NN scalars

1
L= ——0 ¢L ,LL¢L FMVF;LV +J; AM&}L¢L + Kz]AM¢L ,Lb(bj (¢a Az)

General solution for infinitesimals:

n(z) = a" + v, 2" + cat + 2d, "z — d'x"x,,

Xi(x, ¢) = ai(w) + Bij(x)¢; + (2 — D) (z¢ + dya”)pi
(x, A) = 0" A(x) + (W, + 2d,2% — 2d"z,) A" + (2 — D)(Le + d,a”) AP

E.g. massive U(1): when solving rest of determining equations, demand:

m gauge symmetry: A(x) is arbitrary,

ov. _ . 2
B massive vector: JAE =M A+ ..

— derive allowed form of £ and relations between parameters.

1 field: Stiickelberg (J = m), 2 fields: Higgs.
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Automation of LPS method

Large systems lead to an unmanageable set of determining equations.

The LPS method can be cast as a well defined algorithm that completes
in finite time, at least up to finding parameter relationships and the rank

of the symmetry.

We can construct a computer program which takes in a Lagrangian and
returns a list of branches of symmetries and parameter relationships.

Compute the determining equations.
Straightforward.

Reduce the determining equations to standard form.
Algebraically difficult. Includes branching.

Compute rank of each branch.
Simple.



Automation of LPS method

Two (massive) scalars have algebraic determining equation
armign + agmipe + B(mi — m3)pi1da = 0.

Gaussian elimination (with branching) to find null space of

mi? 0 0 o
0 m% 0 as | =0.
0 0 mi—mj I}

Differential equations — generalised Gaussian elimination.

Define ordering on n* and ;. Sort terms. Arrange as rows.
Perform “row reduction” to “diagonal” form.

m ¢1(A;) = 0: remove 0, f term.

m c1(A\i) # 0: use 0;f to eliminate
Oivjf

Cl()\i) oif + Xl(f) =0,
c2(Ni) Oiji f + Xa(f) =0



The standard model

Schematic structure of the standard model:

Lsm ~ (08) + ¢*0¢ + ¢* + ¢* + 10y + ¢ip* .

m N = 244 real degrees of freedom (with RH neutrinos and Higgs).
m About 107 terms in Lsy.

® Maximum number of determining equations: 2.5 x 106
(but many are duplicated, and many are single term).

Apply the LPS method:

Find all (continuous) symmetries and prove that there are no more.

Use know values of parameters, and run them.
Find approximate symmetries.
Add new degrees of freedom looking for new symmetries (e.g. GUT).

Given measurements of new particles/interactions, can they form
part of a new symmetry?



Handling the size of the standard model

Standard model has many fields, many parameters.
Possible in principle.

In practice the order complexity of the LPS algorithm is too high.

Ways forward:
m One family.
= No colour.

m Semi-numerical approach.

Alternatively, use index notation:
L = Sijri(0i07)(Oktr) + Tijradid; (ki) + Uijuibi(05¢n) + V (9, 9) .
Can solve for general symmetries: depends only on derivative structure,

not on values of S, T, U, or on form of V.

Work in progress ...



Beyond Lie point symmetries

m Contact symmetries: depend on first derivative of the field.
m Generalised symmetries (Lie-Backlund), which allow n* and x; to
depend on arbitrary derivatives of ¢;.

m Discrete symmetries (which are not subsets of a continuous group).
Hydon, Eur. J. of Appl. Math., 11 (2000) 515. — a method to
systematically find discrete point symmetries.



Conclusions

Coordinate variation n*, field variation x;.
Master determining equation:
dn* i 8_£77u+ 8_‘Cxi+ oL (dXi _ 09 dn”> _0
dzt = Oz 0p; 0(0u¢i) \dar  Ox¥ dat
The Lie point symmetry method:
m Counterpart to the Euler-Lagrange equations.
m Finds all possible symmetries.
m Finds all interesting relationships between parameters.
m Works even for spontaneously broken symmetries.
m Can be automated; crucial for large systems.

Future work:
m Find all symmetries of the standard model.
m Allow for discrete symmetries [Hydon (1998)].
m Extend to supersymmetry [Grundland et. al. (2008)].
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Equations of motion approach

For zeroth-order equations:

0

For second-order equations (most relevant for Euler-Lagrange):
0 0 0 0
) o = ‘ . .
priya=n"—+xig-+ X7+ ) Ywiza >
T o 9; "0(0,04) ,;V M 00w 04)

where

Xpui = Du(xi) — (0v¢i) Du(n”)
Yi = DuDV(Xi) - (8Vp¢i)Du(77p) - (aup¢i)DV(np) - (8p¢i)DuDV(77p) )

and total derivative is

0 1o}
Dy =0, + (8#@)

90; (W@) D) ;( uvpﬁbi)m-



Non-linear symmetries

Field (no coordinate) symmetries of
L=¢"(0"00u0)" -
m and n # 0 are constant exponents.

Action approach, determining equation

d
me™ Ly + 2n¢“1£ ~0.
Solve for :
x = ap /" a is integration constant .

Non-linear symmetry acts by ¢’ = a¢~"™/2", solution

¢ — (¢ +pac)’P  with p=1-+m/2n.



Degrees of freedom in the standard model

N = 244 real degrees of freedom (with RH neutrinos):
m gauge = 4 real components x (1 hyp + 3 weak + 8 strong) = 48,
m leptons = 8 real components x 3 gens x (v + e) = 48,
m quarks = 8 real components x 3 gens x 3 cols x (u + d) = 144,

m and Higgs = 2 real components x weak-doublet = 4.



