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Outline

Context: physics beyond the standard model – extra dimensions.

We will cover:

Randall-Sundrum 2 model with delta-function brane.

Domain-walls (kinks/solitons).

Trapping scalar and fermion fields to a domain-wall.

Using Dvali-Shifman mechanism to trap gauge fields.

SU(5) grand unified domain-wall model.
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Introduction

We are inspired by the Randall-Sundrum warped metric solution.

RS1 is a compact extra dimension: provides a solution to the hierarchy
problem – lots of work on this model. Branes are string theory like
objects. Warped throats, inflation, dark matter, ...

RS2 is an infinite extra dimension: solves the trapping of low-energy
gravity. Not as much interest because it doesn’t solve any major
problems, just introduces another dimension.

We will pursue RS2 because it seems a natural extension of 3+1 space.

Most work done in collaboration with:
Ray Volkas (Melbourne U) and Rhys Davies (Oxford U).
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(Mem-)Brane worlds



Brane worlds

Premise:

take the standard model and general relativity
add an infinite extra space dimension
recover the standard model and general relativity at low energies

S =
∫
d4x

∫
dy
√
|g|
[
−M3R

+ δ(y)LSM

]
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RS2 model

Need brane and bulk sources:

S =
∫
d4x

∫
dy

[√
|g|(−M3R− Λbulk) +

√
|g(4)|δ(y)(LSM − Λbrane)

]
(1)

Solve the theory:

Randall-Sundrum metric ansatz: ds2 = e−2k|y|g
(4)
µν dxµdxν − dy2

Solve Einstein’s equations (LSM = 0 and R(4) = 0):

Λbulk = −12k2M3 Λbrane = 12kM3

Write R in terms of R(4): R = e2k|y|R(4) − 16kδ(y) + 20k2

Substitute into (1) and integrate over y:

S =
∫
d4x
√
|g(4)|

[
−M

3

k
R(4) + LSM

]
A dimensionally reduced theory.
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Newton’s law

Just need to check Newton’s law. Linear tensor fluctuations are:

gµν = e−2k|y|ηµν +
∑

n

h(4)
n µν(x

µ)ψn(y)

The zero mode h
(4)
0 µν dominates the Kaluza-Klein tower.

Newton’s law is modified to:

V (r) = −GN
m1m2

r

(
1 +

ε2

r2

)
(where ε = 1/k)

Current experimental bounds are very weak:

ε < 12µm =⇒ k > 16× 10−3eV

We have what we wanted: a 5D
theory that at low energies looks like
our 4D universe.

But almost no new phenomenology.

Next step: brane forms naturally.
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Thick and smooth RS2

We want to remove the δ(y) part of the action:

S =
∫
d4x

∫
dy

[√
|g|(−M3R− Λbulk) +

√
|g(4)|δ(y)(LSM − Λbrane)

]

Everything from now on is one way of doing that.

Geometry, hence gravity, is 5D. So why not try to make all fields 5D?

First we show how to make a dynamical brane.

Then we show how to trap scalars, fermions and gauge fields to the
brane.

Finally we present a 4+1-d SU(5) based extension to the standard
model.

Turn off warped gravity for now – just think about trapping 5D fields.
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A domain-wall as a brane

Idea: imagine the Higgs VEV had one value here, another there.

The interface is a
domain-wall.

V = λ(φ∗φ− v2)2

This is unstable – vacua can be
continuously deformed to each
other.

(key: real,imaginary)
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Disconnected degenerate vacua

-v +v

V
(φ

)

φ

We need a potential with disconnected
and degenerate vacua:

V = λ(φ2 − v2)2

with φ now a scalar.

Lagrangian for φ(xµ, y):

L =
1
2
∂Mφ ∂

Mφ− V (φ)

A solution is the kink:

φ(y) = v tanh(
√

2λvy)

It is stable!
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More complicated domain-walls

These examples use two scalar fields to form the wall.

V = λ1(φ2
1 +φ2

2− v2)2 + λ2φ
2
1φ

2
2 V = λ(φ2

1+φ
2
2−v2

1)
2(φ2

1+φ
2
2+v

2
2)

In a realistic model, symmetries dictate V .

To determine stability, expand φ in normal modes about the background:
φ(x, t) = φbg(x) +

∑
n ξn(x)eiωnt. Make sure ω2

n ≥ 0
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Trapping matter fields



Trapping scalar fields

Aim: to trap a 5D scalar field Ξ(xµ, y) to the brane.

A simple quartic coupling works:

S =
∫
d4x

∫
dy

[
1
2
∂Mφ ∂Mφ− V (φ) +

1
2
∂MΞ ∂MΞ−W (Ξ)− gφ2Ξ2

]

Expand Ξ in extra dimensional (Kaluza-Klein) modes:

Ξ(xµ, y) =
∑

n

ξn(xµ)kn(y)

ξn are the 4D fields, kn their extra-dimensional profile. The profiles
satisfy a Schrödinger equation:(

− d2

dy2
+ 2gφ2

bg

)
kn(y) = E2

nkn(y)

The energy eigenvalues En are related to the mass of the 4D field ξn.
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Trapping via a potential well

The effective potential acts like a well.
(
− d2

dy2 + 2gφ2
bg

)
kn = E2

nkn

-3 -2 -1  0  1  2  3

ef
fe

ct
iv

e 
po

te
nt

ia
l

extra dimension y

-3 -2 -1  0  1  2  3

k n
 p

ro
fil

e

extra dimension y

To get 4D theory, substitute mode expansion into action and integrate y:

S =
∫
d4x

[∑
n

(
1
2
∂µξn∂µξn −m2

nξ
2
n

)
+ (higher order terms)

]

Orthonormal basis kn =⇒ diagonal kinetic and mass terms.

mn can be tuned.
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Trapping fermions

We can trap a fermion Ψ(xµ, y) to the brane with a Yukawa coupling:

S =
∫
d4x

∫
dy

[
1
2
∂Mφ ∂Mφ− V (φ) + ΨiΓM∂MΨ− hφΨΨ

]

Decompose into left- and right-chiral fields and Kaluza-Klein modes:

Ψ(xµ, y) =
∑

n

[ψLn(xµ)fLn(y) + ψRn(xµ)fRn(y)]

Schrödinger equation (mode index n suppressed):(
− d2

dy2
+ (h2φ2

bg ∓ hφ′bg)
)
fL,R(y) = m2fL,R(y)

 0

-3 -2 -1  0  1  2  3

ef
fe

ct
iv

e 
po

te
nt

ia
l

extra dimension y

L
R  0

 2

 4

 6

 8

 10

-3 -2 -1  0  1  2  3

re
la

tiv
e 

m
od

e 
en

er
gy

extra dimension y

fLn profile

-3 -2 -1  0  1  2  3

extra dimension y

fRn profile
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Gravity and matter fields

Brane (domain-wall/kink), trapped scalar and fermion. Plus gravity:

S =
∫
d4x

∫
dy
√
|g|
[
−M3R− Λbulk +

1
2
∂Mφ ∂Mφ− V (φ)

+
1
2
∂MΞ ∂MΞ−W (Ξ)− gφ2Ξ2

+ ΨiΓM∂MΨ− hφΨΨ
]

Dimensionally reduce by integrating over y:

S =
∫
d4x
√
|g(4)|

[
−M2

4DR
(4) + (brane dynamics)

+
1
2
∂µξn∂µξn −m2

nξ
2
n − τmnopξmξnξoξp − (brane interactions)

+ ψL0iγ
µ∂µψL0 + ψn(iγµ∂µ − µn)ψn − (brane interactions)

]
4D parameters (M4D, mn, τmnop, µn, brane dynamics) determined by
eigenvalue spectra and overlap integrals.
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Warped matter

Warped metric ds2 = e−2σ(y)ηµνdx
µdxν − dy2 modifies profile equation:(

− d2

dy2
+ 5σ′ d

dy
+ 2σ′′ − 6σ′2 + U(y)

)
fLn(y) = m2

ne
2σfLn(y)

Conformal coordinates ds2 = e−2σ(y(z))(ηµνdx
µdxν − dz2).

Rescale fLn(y) = e2σf̃Ln(z):(
− d2

dz2
+ e−2σ(y(z))U(y(z))

)
f̃Ln(z) = m2

nf̃Ln(z)

Matter trapping potentials are warped down.

Finite bound
state lifetimes.

Resonances.

Tiny probability
of interaction
with continuum.
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(a ∼ 1/M3 ∼ 5D Newton’s constant)
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Trapping gauge fields



Confining gauge fields

Need to trap gauge fields or e.g. Coulomb potential would be
VCoulomb ∼ 1/r2.

Not as simple as a Kaluza-Klein mode expansion:

Photon and gluons must remain massless.

Need to preserve gauge universality at 3+1-d level.

We use the Dvali-Shifman mechanism, following an argument due to
arXiv:0710.5051 (Dvali et al).
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Abelian Higgs model

U(1) gauge theory, charged Higgs χ:

S =
∫
d4x

∫
dy

[
−1
4g2

FMNFMN +
1
2
(DMχ)†DMχ− (|χ|2 −M2

χ)2
|χ|2

M2
χ

]

0

Mχ

|χ
|

extra dimension

U(1)

superconductor superconductor

In the bulk:

U(1) is broken, massive photon ∼Mχ.

Higgs vacuum is a superconductor.

Electric charges are screened.

On the brane:

U(1) is restored, massless photon.

Electric field ends on Higgs vacuum.

Charge screening leaks onto the brane!
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Using a dual superconductor

SU(2) gauge theory, adjoint Higgs χa (a = 1, 2, 3):

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
(DMχa)†DMχa − (χaχa −M2

χ)2
χaχa

M2
χ

]

0

Mχ

|χ
|

extra dimension

U(1)SU(2) SU(2)

dual
superconductor

dual
superconductor

In the bulk:

SU(2) is restored, in confining regime.

Large mass gap ∼Mχ to colourless state.

QCD-like vacuum is dual superconductor.

On the brane:

SU(2) broken to U(1), massless photon.

Electric field repelled from dual
superconductor.

For distances much larger than brane width,
electric potential ∼ 1/r.
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Dvali-Shifman model

Stabilise the domain-wall with an extra uncharged scalar field η:

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
∂Mη∂Mη +

1
2
(DMχa)†DMχ

a

− λ(η2 − v2)2 − λ′

2
(χaχa + κ2 − v2 + η2)2

]
η has a kink profile.

If κ2 − v2 < 0, χ becomes
tachyonic near domain-wall
(where η ∼ 0).

True vacuum has χ 6= 0 near
domain-wall.

χ breaks symmetry near wall
and confines gauge fields.

-v

0

v

fi
el

d 
pr

of
ile

extra dimension y

η
χ

Can add gravity: self consistently solve σ (warped metric profile), η, χ.
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Dvali-Shifman mechanism

The Dvali-Shifman mechanism:

Works with any non-Abelian SU(N) theory.

Assumes the SU(N) theory is confining (not proven for 5D).

Has gauge universality:

Charges in the bulk are connected to the brane by a flux tube.
Coupling to gauge fields is independent of extra dimensional profile.

Obvious choice for SU(N) group is SU(5).
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Quantum numbers of the standard model

Representations under
SU(3)×SU(2)L×U(1)Y :

qL ∼ (3,2)1/3 uR ∼ (3,1)4/3 dR ∼ (3,1)−2/3

lL ∼ (1,2)−1 νR ∼ (1,1)0 eR ∼ (1,1)−2

5∗ ⊃ d
r,w,b

L νL eL

(5× 5)A = 10 ⊃ ur,w,b
L ur,w,b

L dr,w,b
L eL
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Putting it all together



The SU(5) model

Want the standard model on the brane: SU(3)× SU(2)L × U(1)Y .

Dvali-Shifman needs a larger gauge group in the bulk:

SU(5) is a perfect fit!

Unify the fermions as usual: 5∗, 10.
Higgs doublet goes in a 5∗.

Summary:

4 + 1-dimensional theory – all spatial dimensions the same.

SU(5) local gauge symmetry, Z2 discrete symmetry.

Field content:

gauge fields: GMN ∼ 24.
scalars: η ∼ 1, χ ∼ 24, Φ ∼ 5∗.
fermions: Ψ5 ∼ 5∗, Ψ10 ∼ 10.

The standard model emerges as a low energy approximation.

Ignore gravity for now.
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The action (without gravity)

The theory is described by:

S =
∫
d4x

∫
dy

[
−1
4g2

GaMNGa
MN +

1
2
∂Mη∂Mη + Tr

(
(DMχ)†(DMχ)

)
+ (DMΦ)†(DMΦ) + Ψ5iΓMDMΨ5 + Ψ10iΓMDMΨ10

− h5ηΨ5Ψ5η − h5χΨ5χ
T Ψ5

− h10η Tr(Ψ10Ψ10)η + 2h10χ Tr(Ψ10χΨ10)

− h−(Ψ5)cΨ10Φ− h+(ε(Ψ10)cΨ10Φ∗) + h.c.

− (cη2 − µ2
χ) Tr(χ2)− dηTr(χ3)

− λ1

[
Tr(χ2)

]2 − λ2 Tr(χ4)− l(η2 − v2)2

− µ2
ΦΦ†Φ− λ3(Φ†Φ)2 − λ4Φ†Φη2

− 2λ5Φ†Φ Tr(χ2)− λ6Φ†(χT )2Φ− λ7Φ†χT Φη
]

with kinetic, brane trapping, mass and Dvali-Shifman terms.
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Split fermions

Let ΨnY be the components of Ψ5 and Ψ10 (n = 5, 10, Y = hypercharge
of component), e.g. Ψ5 ⊃ Ψ5,−1 = lL. Dirac equation:[

iΓM∂M − hnηη(y)−
√

3
5
Y

2
hnχχ1(y)

]
ΨnY (xµ, y) = 0

Each ΨnY is a non-chiral 5D field: need to extract the confined
left-chiral zero-mode (recall the mode expansion and Schrödinger
equation approach):

ΨnY (xµ, y) = ψnY,L(xµ)fnY (y) + massive modes

The effective Schrödinger potential
depends on Y .

Thus each component ψnY,L has a
different profile fnY .

f 5
 Y

dc
L

lL

-6 -4 -2  0  2  4  6

f 1
0 

Y

dimensionless coordinate ky

ec
L

uc
L

qL
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Split Higgs

Φ contains the Higgs doublet Φw and a coloured triplet Φc. Mode
expand Φw,c(xµ, y) = φw,c(xµ)pw,c(y). Schrödinger equation for pw,c is:(

− d2

dy2
+

3Y 2

20
λ6χ

2
1 +

√
3
5
Y

2
λ7ηχ1 + . . .

)
pw,c(y) = m2

w,cpw,c(y)

Critical that ground states have:

m2
w < 0 to break electroweak symmetry.

m2
c > 0 to preserve QCD.

Large enough parameter space
to allow this.

-6 -4 -2  0  2  4  6

W
Y

dimensionless coordinate ky

W-1
W2/3

29 / 32



Split Higgs

Φ contains the Higgs doublet Φw and a coloured triplet Φc. Mode
expand Φw,c(xµ, y) = φw,c(xµ)pw,c(y). Schrödinger equation for pw,c is:(

− d2

dy2
+

3Y 2

20
λ6χ

2
1 +

√
3
5
Y

2
λ7ηχ1 + . . .

)
pw,c(y) = m2

w,cpw,c(y)

Critical that ground states have:

m2
w < 0 to break electroweak symmetry.

m2
c > 0 to preserve QCD.

Large enough parameter space
to allow this.

-6 -4 -2  0  2  4  6

W
Y

dimensionless coordinate ky

W-1
W2/3

29 / 32



Features

Standard model parameters are computed from overlap integrals.

With one generation of fermions, parameters are easy to fit.

The model overcomes the major SU(5) obstacles:

me = md not obtained due to naturally split fermions.

Coloured Higgs induced proton decay is suppressed.

Gauge coupling constant running modified due to Kaluza-Klein
modes appearing (not analysed yet).

Adding gravity:

Solve for warped metric, kink and Dvali-Shifman background.

Continuum fermion and scalar modes are highly suppressed on the
brane.

Main features remain.
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Future work and extensions

Future work:

Understand confinement of SU(N) in 5D.

Three families with full parameter fitting.

Neutrino masses and mixings.

Brane cosmology.

One promising extension is to the E6 group:

E6 → SO(10) in the bulk.

SO(10) → SU(5) on the brane due to
clash-of-symmetries and Dvali-Shifman.

Can eliminate kink scalar field η.

Can unify Ψ5 and Ψ10.

Large reduction of free parameters. fE

fX

(10,+)(10,–)

(10´,+)

(10´,–)
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