Model building using Lie-point symmetries

Damien P. George

Nikhef theory group Amsterdam, The Netherlands

CERN LPCC Summer Institute — 18th August 2011

(arXiv:1105.4604)

The Lie point symmetry method

Want to systematically find all the symmetries of a model,

- \rightarrow even if symmetry is spontaneously broken,
- \rightarrow also derive parameter relationships that give enhanced symmetries.

The Lie point symmetry method consists of finding the determining equations, whose solutions describe infinitesimal symmetries, and then solving these equations.

Point: transformations depend only on coords and fields, not on derivatives of fields.

Overview:

- The determining equations.
- Example with 2 scalars.
- Automation.
- N interacting scalars.
- Spin-1 plus N scalars.
- Spontaneous symmetry breaking.
- The standard model.

Variation of the action

Infinitesimal Lie point symmetries:

 $\begin{aligned} x^{\mu} &\to x^{\mu} + \eta^{\mu}(x,\phi) \\ \phi_i &\to \phi_i + \chi_i(x,\phi) \end{aligned} \qquad S \to S + \delta S \text{ should be unchanged.}$

Solve for the fields \rightarrow Euler-Lagrange equations: $\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_i)} \right) = 0.$ Form a divergence \rightarrow Noether's theorem: $\partial_\mu \left[\mathcal{L} \eta^\mu + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_i)} (\chi_i - \eta^\nu \partial_\nu \phi_i) \right] = 0.$ Solve for the infinitesimals \rightarrow master determining equation:

$$\mathcal{L}\frac{\mathrm{d}\eta^{\mu}}{\mathrm{d}x^{\mu}} + \frac{\partial\mathcal{L}}{\partial x^{\mu}}\eta^{\mu} + \frac{\partial\mathcal{L}}{\partial\phi_{i}}\chi_{i} + \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi_{i})}\left(\frac{\mathrm{d}\chi_{i}}{\mathrm{d}x^{\mu}} - \frac{\partial\phi_{i}}{\partial x^{\nu}}\frac{\mathrm{d}\eta^{\nu}}{\mathrm{d}x^{\mu}}\right) = 0$$

Total derivative: $\frac{\mathrm{d}}{\mathrm{d}x^{\mu}} \equiv \frac{\partial}{\partial x^{\mu}} + \frac{\partial \phi_i}{\partial x^{\mu}} \frac{\partial}{\partial \phi_i}$.

Example: two scalars

Only field symmetries, $\phi_i \rightarrow \phi_i + \chi_i(\phi_i)$. Master determining equation:

$$\frac{\partial \mathcal{L}}{\partial \phi_i} \chi_i + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_i)} \frac{\partial \phi_j}{\partial x^\mu} \frac{\partial \chi_i}{\partial \phi_j} = 0 \,.$$

Apply to Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi_1 \partial_{\mu} \phi_1 + \frac{1}{2} \partial^{\mu} \phi_2 \partial_{\mu} \phi_2 - \frac{1}{2} m_1^2 \phi_1^2 - \frac{1}{2} m_2^2 \phi_2^2 \,.$$

Determining equation is

$$- m_1^2 \phi_1 \chi_1 - m_2^2 \phi_2 \chi_2 + \partial^\mu \phi_1 \partial_\mu \phi_1 \frac{\partial \chi_1}{\partial \phi_1} + \partial^\mu \phi_1 \partial_\mu \phi_2 \frac{\partial \chi_1}{\partial \phi_2} + \partial^\mu \phi_2 \partial_\mu \phi_1 \frac{\partial \chi_2}{\partial \phi_1} + \partial^\mu \phi_2 \partial_\mu \phi_2 \frac{\partial \chi_2}{\partial \phi_2} = 0 \,.$$

Equate independent terms to zero:

$$-m_1^2\phi_1\chi_1 - m_2^2\phi_2\chi_2 = 0, \quad \frac{\partial\chi_1}{\partial\phi_1} = 0, \quad \frac{\partial\chi_1}{\partial\phi_2} + \frac{\partial\chi_2}{\partial\phi_1} = 0, \quad \frac{\partial\chi_2}{\partial\phi_2} = 0.$$

Example: two scalars

Determining equations:

$$-m_1^2\phi_1\chi_1 - m_2^2\phi_2\chi_2 = 0, \quad \frac{\partial\chi_1}{\partial\phi_1} = 0, \quad \frac{\partial\chi_1}{\partial\phi_2} + \frac{\partial\chi_2}{\partial\phi_1} = 0, \quad \frac{\partial\chi_2}{\partial\phi_2} = 0.$$

General solution to last three equations:

$$\chi_1(\phi_2) = \alpha_1 + \beta \phi_2$$
, $\chi_2(\phi_1) = \alpha_2 - \beta \phi_1$.

Symmetries:

- α_1 : shift of ϕ_1 .
- α_2 : shift of ϕ_2 .
- β : rotation between ϕ_1 and ϕ_2 .

Final determining equation is

$$\alpha_1 m_1^2 \phi_1 + \alpha_2 m_2^2 \phi_2 + \beta (m_1^2 - m_2^2) \phi_1 \phi_2 = 0 \,.$$

 \rightarrow the model parameters dictate the symmetries.

Automation of LPS method

Two (massive) scalars have algebraic determining equation $\alpha_1 m_1^2 \phi_1 + \alpha_2 m_2^2 \phi_2 + \beta (m_1^2 - m_2^2) \phi_1 \phi_2 = 0 \,.$

Gaussian elimination (with branching) to find null space of

$$\begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_1^2 - m_2^2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \beta \end{pmatrix} = 0 \,.$$

Differential equations \rightarrow generalised Gaussian elimination. Define ordering on η^{μ} and χ_i . Sort terms. Arrange as rows. Perform "row reduction" to "diagonal" form.

$$\begin{aligned} c_1(\lambda_i)\,\partial_i f + X_1(f) &= 0 ,\\ c_2(\lambda_i)\,\partial_{i+j} f + X_2(f) &= 0 . \end{aligned} \qquad \begin{array}{l} \bullet \ c_1(\lambda_i) &= 0 : \text{ remove } \partial_i f \text{ term.} \\ \bullet \ c_1(\lambda_i) &\neq 0 : \text{ use } \partial_i f \text{ to eliminate} \\ \partial_{i+j} f. \end{aligned}$$

${\cal N}$ interacting scalar fields

Symmetries dictated by structure of interactions between fields.

General Lagrangian for N spin-0 fields

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi_i \partial_{\mu} \phi_i - V(\phi) \,.$$

Determining equations

$$\begin{split} V\partial_{\mu}\eta^{\mu} &+ \frac{\partial V}{\partial \phi_{i}}\chi_{i} = 0 , \\ \partial^{\mu}\chi_{i} - V\frac{\partial\eta^{\mu}}{\partial \phi_{i}} = 0 & \forall \mu \; \forall i , \qquad (\chi = \chi(\phi)) \\ \partial^{\mu}\eta^{\nu} + \partial^{\nu}\eta^{\mu} = 0 & \forall \mu \; \forall \nu, \; \mu \neq \nu , \qquad (\text{Poincaré}) \\ \frac{\partial\chi_{i}}{\partial \phi_{j}} + \frac{\partial\chi_{j}}{\partial \phi_{i}} = 0 & \forall i \; \forall j, \; i \neq j , \qquad (\text{shift, rot.}) \\ \frac{1}{2}\partial_{\sigma}\eta^{\sigma} - \partial_{\bar{\mu}}\eta^{\bar{\mu}} + \frac{\partial\chi_{\bar{i}}}{\partial \phi_{\bar{i}}} = 0 & \forall \bar{\mu} \; \forall \bar{i} , \qquad (\text{scaling}) \\ \frac{\partial\eta^{\mu}}{\partial \phi_{i}} = 0 & \forall \mu \; \forall i . \qquad (\eta = \eta(x)) \end{split}$$

N interacting scalar fields

General Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi_i \partial_{\mu} \phi_i - V(\phi) \,.$$

For $D \neq 2$ the general coordinate symmetries are ($b^{\mu\nu}$ anti-symm)

$$\eta^{\mu}(x) = a^{\mu} + b^{\mu}_{\ \nu} x^{\nu} + c \, x^{\mu} \, .$$

General field symmetries are $(\beta_{ij} \text{ anti-symm})$

$$\chi_i(\phi) = \alpha_i + \beta_{ij}\phi_j + \frac{2-D}{2}c\phi_i.$$

Remaining determining equation is

$$DcV + \frac{\partial V}{\partial \phi_i} \left(\alpha_i + \beta_{ij} \phi_j + \frac{2 - D}{2} c \phi_i \right) = 0.$$

Form of $V \leftrightarrow$ allowed symmetries.

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi_{i}\partial_{\mu}\phi_{i} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + J_{i}A^{\mu}\partial_{\mu}\phi_{i} + K_{ij}A^{\mu}\phi_{i}\partial_{\mu}\phi_{j} - V(\phi, A^{2})$$

General solution for infinitesimals:

$$\eta^{\mu}(x) = a^{\mu} + b^{\mu}{}_{\nu}x^{\nu} + c x^{\mu} + 2d_{\nu}x^{\nu}x^{\mu} - d^{\mu}x^{\nu}x_{\nu}$$

$$\chi_{i}(x,\phi) = \alpha_{i}(x) + \beta_{ij}(x)\phi_{j} + (2-D)(\frac{1}{2}c + d_{\nu}x^{\nu})\phi_{i}$$

$$\xi^{\mu}(x,A) = \partial^{\mu}\Lambda(x) + (b^{\mu}{}_{\nu} + 2d_{\nu}x^{\mu} - 2d^{\mu}x_{\nu})A^{\nu} + (2-D)(\frac{1}{2}c + d_{\nu}x^{\nu})A^{\mu}$$

E.g. massive U(1): when solving rest of determining equations, demand: a gauge symmetry: $\Lambda(x)$ is arbitrary,

• massive vector:
$$\frac{\partial V}{\partial A^{\mu}} = m^2 A_{\mu} + \dots$$

 \rightarrow derive allowed form of ${\cal L}$ and relations between parameters.

1 field: Stückelberg (J = m), 2 fields: Higgs.

Spontaneously broken symmetries

Spontaneously broken scale symmetry: $V = \lambda \phi^4$ has scale symmetry. $V = \lambda (\phi + v)^4$ has shift-scale-shift symmetry. $V = \lambda (\phi_1^2 + \phi_2^2 - v^2)^2$ has U(1). Define $\phi_2 = v + \varphi$.

$$V=\lambda(\phi_1^2+arphi^2+2varphi)^2$$
 has shift-U(1)-shift.

LPS method will find symmetry, no matter how broken/hidden it may be.

For example, solve for relationships between c_i in

$$V = c_1 + c_2\phi_1 + c_3\phi_2 + c_4\phi_1^2 + c_5\phi_1\phi_2 + c_6\phi_2^2 + c_7\phi_1^3 + c_8\phi_1^2\phi_2 + c_9\phi_1\phi_2^2 + c_{10}\phi_2^3 + c_{11}\phi_1^4 + c_{12}\phi_1^3\phi_2 + c_{13}\phi_1^2\phi_2^2 + c_{14}\phi_1\phi_2^3 + c_{15}\phi_2^4.$$

The standard model

Schematic structure of the standard model:

$$\mathcal{L}_{\mathsf{SM}} \sim (\partial \phi)^2 + \phi^2 \partial \phi + \phi^2 + \phi^4 + \psi \partial \psi + \phi \psi^2 \,.$$

- N = 244 real degrees of freedom (with RH neutrinos and Higgs).
- About 10^7 terms in \mathcal{L}_{SM} .
- Maximum number of determining equations: 2.5 × 10⁶ (but many are duplicated, and many are single term).

Apply the LPS method:

- Find all (continuous) symmetries and *prove* that there are no more.
- Use know values of parameters, and run them.
- Find approximate symmetries.
- Add new degrees of freedom looking for new symmetries (e.g. GUT).
- Given measurements of new particles/interactions, can they form part of a new symmetry?

D.P. George

Model building using Lie-point symmetries

Conclusions

Coordinate variation η^{μ} , field variation χ_i . Master determining equation:

$$\mathcal{L}\frac{\mathrm{d}\eta^{\mu}}{\mathrm{d}x^{\mu}} + \frac{\partial \mathcal{L}}{\partial x^{\mu}}\eta^{\mu} + \frac{\partial \mathcal{L}}{\partial \phi_{i}}\chi_{i} + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{i})}\left(\frac{\mathrm{d}\chi_{i}}{\mathrm{d}x^{\mu}} - \frac{\partial \phi_{i}}{\partial x^{\nu}}\frac{\mathrm{d}\eta^{\nu}}{\mathrm{d}x^{\mu}}\right) = 0$$

The Lie point symmetry method:

- Counterpart to the Euler-Lagrange equations.
- Finds all possible symmetries.
- Finds all interesting relationships between parameters.
- Works even for spontaneously broken symmetries.
- Can be automated; crucial for large systems.

Future work:

- Find all symmetries of the standard model.
- Allow for discrete symmetries [Hydon (1998)].
- Extend to supersymmetry [Grundland, Hariton, Snobl (2008)].

References

Text book:

• Olver, *Applications of Lie Groups to Differential Equations*, 1986. Reduction to standard form:

- Reid, J. Phys. A: Math. and General, 23 (1990) L853.
- Reid, Eur. J. of Appl. Math., 2 (1991) 293.
- Reid, Proc. ISSAC '92 (1992).

LPS method and computation:

 Hereman, CRC Handbook of Lie Group Analysis of Differential Equations, (1996) 367.

Previous work using LPS for field theories:

- Hereman, Marchildon & Grundland, Proc. XIX Intl. Colloq. Spain, (1992) 402.
- Marchildon, J. Group Theor. Phys., 3 (1995) 115.
- Marchildon, J. Nonlin. Math. Phys., 5 (1998) 68.

DPG, A systematic approach to model building, arXiv:1105.4604.

NI

Symmetries of one scalar

Specialise to N = 1:

$$-d\gamma V + \frac{\mathrm{d}V}{\mathrm{d}\phi} \left(\alpha + \gamma \phi\right) = 0 \,.$$

Four distinct cases:

 $V = 0: \ \alpha \text{ and } \gamma \text{ free. Independent shift and scale symmetries.} \\ \text{Rank associated with field is } R_{\chi} = (2). \\ V = \text{const: } \gamma = 0 \text{ but } \alpha \text{ is free.} \\ \text{Field rank } R_{\chi} = (1). \\ V = \lambda (\phi + v)^d: \text{ Solve above differential equation.} \\ \text{Given } v, \text{ relationship between shift and scale symmetry is} \\ \text{fixed by } v = \alpha / \gamma. \\ \text{Field rank } R_{\chi} = (1). \\ \end{array}$

$$V$$
 arbitrary: $\alpha=\gamma=0.$ No shift or scale symmetry. Field rank $R_{\chi}=(0).$

Symmetries of two scalars

$$-d\gamma V + \frac{\partial V}{\partial \phi_1} \left(\alpha_1 + \beta \phi_2 + \gamma \phi_1\right) + \frac{\partial V}{\partial \phi_2} \left(\alpha_2 - \beta \phi_1 + \gamma \phi_2\right) = 0.$$

Go to polar field variables, $\phi_1 = r \cos \theta$, $\phi_2 = r \sin \theta$:

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} r \partial_{\mu} r + r^2 \frac{1}{2} \partial^{\mu} \theta \partial_{\mu} \theta - V(r, \theta) .$$

Determining equation is

$$-d\gamma V + \frac{\partial V}{\partial r} \left(\alpha_1 \cos \theta + \alpha_2 \sin \theta + \gamma r\right) - \frac{\partial V}{\partial \theta} \left(\alpha_1 \frac{\sin \theta}{r} - \alpha_2 \frac{\cos \theta}{r} + \beta\right) = 0.$$

A solution:

$$V(r,\theta) = \lambda \left(r^k - v e^{l\theta} \right)^m$$
.

k and m related by mk=d. Relationship between scale and rotation symmetry fixed by $k\gamma=l\beta.$ Action of the symmetry is $r\to {\rm e}^{\gamma}r$, $\theta\to\theta-k\gamma/l$ and $x^{\mu}\to {\rm e}^{-d\gamma/D}x^{\mu}.$

D.P. George

Non-linear symmetries

Field (no coordinate) symmetries of

$$\mathcal{L} = \phi^m (\partial^\mu \phi \partial_\mu \phi)^n \,.$$

m and $n \neq 0$ are constant exponents.

Determining equation

$$m\phi^{m-1}\chi + 2n\phi^m \frac{\mathrm{d}\chi}{\mathrm{d}\phi} = 0 \,.$$

Solve for χ :

 $\chi = a \phi^{-m/2n}$ a is integration constant.

Non-linear symmetry acts by $\bar{\phi}' = a \bar{\phi}^{-m/2n}$, solution

$$\phi \to (\phi^p + pa\epsilon)^{1/p} \qquad {\rm with} \quad p = 1 + m/2n \, .$$

The action versus the equations of motion

Distinction between the symmetries of action and symmetries of corresponding equations of motion.

G a symmetry of an action \implies G also a symmetry of the Euler-Lagrange equations. Converse not necessarily true.

Denote the system by $\Delta_j(x^\mu, \phi_i, \partial \phi_i) = 0.$

1 Construct the prolonged symmetry operator $\mathrm{pr}^{(k)} \alpha$.

$$\boldsymbol{\alpha} = \eta^{\mu} \frac{\partial}{\partial x^{\mu}} + \chi_i \frac{\partial}{\partial \phi_i} \,.$$

Prolongation extends α to include all possible combinations of derivatives of ϕ , to order k.

- **2** Apply $\operatorname{pr}^{(k)} \boldsymbol{\alpha}$ to the system: $(\operatorname{pr}^{(k)} \boldsymbol{\alpha} \cdot \Delta)|_{\Delta=0} = 0.$
- **3** Equate all independent coefficients to zero \rightarrow determining equations.

Equations of motion example

System defined by Euler-Lagrange equation $\ddot{\phi} - \phi'' + m^2 \phi = 0.$

What are its symmetries?

a
$$m = 0$$
 has
$$\eta^{t}(t, x) = F_{+}(t + x) + F_{-}(t - x),
 \eta^{x}(t, x) = F_{+}(t + x) - F_{-}(t - x) + f,
 \chi(t, x, \phi) = G_{+}(t + x) + G_{-}(t - x) + g \phi(t, x).

$$m \neq 0 \text{ has}
 \eta^{t}(x) = a^{t} + bx,
 \eta^{x}(t) = a^{x} + bt,
 \chi(t, x, \phi) = \int_{-\infty}^{+\infty} dk \left[H_{+}(k) e^{i(\omega t + kx)} + H_{-}(k) e^{i(\omega t - kx)} \right] + g \phi(t, x),$$$$

where $\omega = \sqrt{k^2 + m^2}$.

NINEF

- N = 244 real degrees of freedom (with RH neutrinos):
 - gauge = 4 real components \times (1 hyp + 3 weak + 8 strong) = 48,
 - leptons = 8 real components imes 3 gens imes (u + e) = 48,
 - quarks = 8 real components \times 3 gens \times 3 cols \times (u + d) = 144,
 - and Higgs = 2 real components \times weak-doublet = 4.