Model building using Lie-point symmetries

Damien P. George

Nikhef theory group
Amsterdam, The Netherlands

CERN LPCC Summer Institute $-18^{\text {th }}$ August 2011
(arXiv:1105.4604)

NWO

Want to systematically find all the symmetries of a model,
\rightarrow even if symmetry is spontaneously broken,
\rightarrow also derive parameter relationships that give enhanced symmetries.
The Lie point symmetry method consists of finding the determining equations, whose solutions describe infinitesimal symmetries, and then solving these equations.

Point: transformations depend only on coords and fields, not on derivatives of fields.
Overview:

- The determining equations.
- Example with 2 scalars.
- Automation.
- N interacting scalars.
- Spin-1 plus N scalars.

■ Spontaneous symmetry breaking.

- The standard model.

Variation of the action

Infinitesimal Lie point symmetries:

$$
\begin{aligned}
x^{\mu} & \rightarrow x^{\mu}+\eta^{\mu}(x, \phi) \\
\phi_{i} & \rightarrow \phi_{i}+\chi_{i}(x, \phi)
\end{aligned} \quad S \rightarrow S+\delta S \text { should be unchanged. }
$$

Solve for the fields \rightarrow Euler-Lagrange equations: $\frac{\partial \mathcal{L}}{\partial \phi_{i}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}\right)=0$.
Form a divergence \rightarrow Noether's theorem: $\partial_{\mu}\left[\mathcal{L} \eta^{\mu}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}\left(\chi_{i}-\eta^{\nu} \partial_{\nu} \phi_{i}\right)\right]=0$.
Solve for the infinitesimals \rightarrow master determining equation:

$$
\mathcal{L} \frac{\mathrm{d} \eta^{\mu}}{\mathrm{d} x^{\mu}}+\frac{\partial \mathcal{L}}{\partial x^{\mu}} \eta^{\mu}+\frac{\partial \mathcal{L}}{\partial \phi_{i}} \chi_{i}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}\left(\frac{\mathrm{d} \chi_{i}}{\mathrm{~d} x^{\mu}}-\frac{\partial \phi_{i}}{\partial x^{\nu}} \frac{\mathrm{d} \eta^{\nu}}{\mathrm{d} x^{\mu}}\right)=0
$$

Total derivative: $\frac{\mathrm{d}}{\mathrm{d} x^{\mu}} \equiv \frac{\partial}{\partial x^{\mu}}+\frac{\partial \phi_{i}}{\partial x^{\mu}} \frac{\partial}{\partial \phi_{i}}$.

Example: two scalars

Only field symmetries, $\phi_{i} \rightarrow \phi_{i}+\chi_{i}\left(\phi_{i}\right)$.
Master determining equation:

$$
\frac{\partial \mathcal{L}}{\partial \phi_{i}} \chi_{i}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \frac{\partial \phi_{j}}{\partial x^{\mu}} \frac{\partial \chi_{i}}{\partial \phi_{j}}=0
$$

Apply to Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi_{1} \partial_{\mu} \phi_{1}+\frac{1}{2} \partial^{\mu} \phi_{2} \partial_{\mu} \phi_{2}-\frac{1}{2} m_{1}^{2} \phi_{1}^{2}-\frac{1}{2} m_{2}^{2} \phi_{2}^{2}
$$

Determining equation is

$$
\begin{aligned}
& -m_{1}^{2} \phi_{1} \chi_{1}-m_{2}^{2} \phi_{2} \chi_{2}+\partial^{\mu} \phi_{1} \partial_{\mu} \phi_{1} \frac{\partial \chi_{1}}{\partial \phi_{1}} \\
& \quad+\partial^{\mu} \phi_{1} \partial_{\mu} \phi_{2} \frac{\partial \chi_{1}}{\partial \phi_{2}}+\partial^{\mu} \phi_{2} \partial_{\mu} \phi_{1} \frac{\partial \chi_{2}}{\partial \phi_{1}}+\partial^{\mu} \phi_{2} \partial_{\mu} \phi_{2} \frac{\partial \chi_{2}}{\partial \phi_{2}}=0
\end{aligned}
$$

Equate independent terms to zero:
$-m_{1}^{2} \phi_{1} \chi_{1}-m_{2}^{2} \phi_{2} \chi_{2}=0, \quad \frac{\partial \chi_{1}}{\partial \phi_{1}}=0, \quad \frac{\partial \chi_{1}}{\partial \phi_{2}}+\frac{\partial \chi_{2}}{\partial \phi_{1}}=0, \quad \frac{\partial \chi_{2}}{\partial \phi_{2}}=0$.

Example: two scalars

Determining equations:

$$
-m_{1}^{2} \phi_{1} \chi_{1}-m_{2}^{2} \phi_{2} \chi_{2}=0, \quad \frac{\partial \chi_{1}}{\partial \phi_{1}}=0, \quad \frac{\partial \chi_{1}}{\partial \phi_{2}}+\frac{\partial \chi_{2}}{\partial \phi_{1}}=0, \quad \frac{\partial \chi_{2}}{\partial \phi_{2}}=0 .
$$

General solution to last three equations:

$$
\chi_{1}\left(\phi_{2}\right)=\alpha_{1}+\beta \phi_{2}, \quad \chi_{2}\left(\phi_{1}\right)=\alpha_{2}-\beta \phi_{1} .
$$

Symmetries:

- α_{1} : shift of ϕ_{1}.
- α_{2} : shift of ϕ_{2}.
- β : rotation between ϕ_{1} and ϕ_{2}.

Final determining equation is

$$
\alpha_{1} m_{1}^{2} \phi_{1}+\alpha_{2} m_{2}^{2} \phi_{2}+\beta\left(m_{1}^{2}-m_{2}^{2}\right) \phi_{1} \phi_{2}=0
$$

\rightarrow the model parameters dictate the symmetries.

Automation of LPS method

Two (massive) scalars have algebraic determining equation

$$
\alpha_{1} m_{1}^{2} \phi_{1}+\alpha_{2} m_{2}^{2} \phi_{2}+\beta\left(m_{1}^{2}-m_{2}^{2}\right) \phi_{1} \phi_{2}=0 .
$$

Gaussian elimination (with branching) to find null space of

$$
\left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{1}^{2}-m_{2}^{2}
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\beta
\end{array}\right)=0
$$

Differential equations \rightarrow generalised Gaussian elimination.
Define ordering on η^{μ} and χ_{i}. Sort terms. Arrange as rows.
Perform "row reduction" to "diagonal" form.

$$
\begin{aligned}
c_{1}\left(\lambda_{i}\right) \partial_{i} f+X_{1}(f) & =0, \\
c_{2}\left(\lambda_{i}\right) \partial_{i+j} f+X_{2}(f) & =0 .
\end{aligned}
$$

- $c_{1}\left(\lambda_{i}\right)=0$: remove $\partial_{i} f$ term.
- $c_{1}\left(\lambda_{i}\right) \neq 0$: use $\partial_{i} f$ to eliminate $\partial_{i+j} f$.

Symmetries dictated by structure of interactions between fields.
General Lagrangian for N spin-0 fields

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i}-V(\phi)
$$

Determining equations

$$
\begin{array}{rlrlr}
V \partial_{\mu} \eta^{\mu}+\frac{\partial V}{\partial \phi_{i}} \chi_{i} & =0, & & \\
\partial^{\mu} \chi_{i}-V \frac{\partial \eta^{\mu}}{\partial \phi_{i}} & =0 & & \forall \mu \forall i, & \\
\partial^{\mu} \eta^{\nu}+\partial^{\nu} \eta^{\mu} & =0 & & \forall \mu \forall \nu, \mu \neq \chi(\phi)) \\
\frac{\partial \chi_{i}}{\partial \phi_{j}}+\frac{\partial \chi_{j}}{\partial \phi_{i}} & =0 & & \forall i \forall j, i \neq j, & \\
\text { (Poincaré) } \\
\frac{1}{2} \partial_{\sigma} \eta^{\sigma}-\partial_{\bar{\mu}} \eta^{\bar{\mu}}+\frac{\partial \chi_{\bar{i}}}{\partial \phi_{\bar{i}}} & =0 & & \forall \bar{\mu} \forall \bar{i}, & \\
\frac{\partial \eta^{\mu}}{\partial \phi_{i}} & =0 & & \forall \mu \forall i . &
\end{array}
$$

General Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i}-V(\phi) .
$$

For $D \neq 2$ the general coordinate symmetries are ($b^{\mu \nu}$ anti-symm)

$$
\eta^{\mu}(x)=a^{\mu}+b^{\mu}{ }_{\nu} x^{\nu}+c x^{\mu} .
$$

General field symmetries are ($\beta_{i j}$ anti-symm)

$$
\chi_{i}(\phi)=\alpha_{i}+\beta_{i j} \phi_{j}+\frac{2-D}{2} c \phi_{i}
$$

Remaining determining equation is

$$
D c V+\frac{\partial V}{\partial \phi_{i}}\left(\alpha_{i}+\beta_{i j} \phi_{j}+\frac{2-D}{2} c \phi_{i}\right)=0
$$

Form of $V \leftrightarrow$ allowed symmetries.

$$
\mathcal{L}=-\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+J_{i} A^{\mu} \partial_{\mu} \phi_{i}+K_{i j} A^{\mu} \phi_{i} \partial_{\mu} \phi_{j}-V\left(\phi, A^{2}\right)
$$

General solution for infinitesimals:

$$
\eta^{\mu}(x)=a^{\mu}+b_{\nu}^{\mu} x^{\nu}+c x^{\mu}+2 d_{\nu} x^{\nu} x^{\mu}-d^{\mu} x^{\nu} x_{\nu}
$$

$$
\chi_{i}(x, \phi)=\alpha_{i}(x)+\beta_{i j}(x) \phi_{j}+(2-D)\left(\frac{1}{2} c+d_{\nu} x^{\nu}\right) \phi_{i}
$$

$$
\xi^{\mu}(x, A)=\partial^{\mu} \Lambda(x)+\left(b^{\mu}{ }_{\nu}+2 d_{\nu} x^{\mu}-2 d^{\mu} x_{\nu}\right) A^{\nu}+(2-D)\left(\frac{1}{2} c+d_{\nu} x^{\nu}\right) A^{\mu}
$$

E.g. massive $\mathrm{U}(1)$: when solving rest of determining equations, demand:

- gauge symmetry: $\Lambda(x)$ is arbitrary,
- massive vector: $\frac{\partial V}{\partial A^{\mu}}=m^{2} A_{\mu}+\ldots$.
\rightarrow derive allowed form of \mathcal{L} and relations between parameters.
1 field: Stückelberg $(J=m), 2$ fields: Higgs.

Spontaneously broken symmetries

Spontaneously broken scale symmetry:
$V=\lambda \phi^{4}$ has scale symmetry.
$V=\lambda(\phi+v)^{4}$ has shift-scale-shift symmetry.
$V=\lambda\left(\phi_{1}^{2}+\phi_{2}^{2}-v^{2}\right)^{2}$ has $\mathrm{U}(1)$.
Define $\phi_{2}=v+\varphi$.
$V=\lambda\left(\phi_{1}^{2}+\varphi^{2}+2 v \varphi\right)^{2}$ has shift- $\mathrm{U}(1)$-shift.

LPS method will find symmetry, no matter how broken/hidden it may be.
For example, solve for relationships between c_{i} in

$$
\begin{aligned}
V= & c_{1}+c_{2} \phi_{1}+c_{3} \phi_{2}+c_{4} \phi_{1}^{2}+c_{5} \phi_{1} \phi_{2}+c_{6} \phi_{2}^{2}+c_{7} \phi_{1}^{3}+c_{8} \phi_{1}^{2} \phi_{2}+c_{9} \phi_{1} \phi_{2}^{2} \\
& +c_{10} \phi_{2}^{3}+c_{11} \phi_{1}^{4}+c_{12} \phi_{1}^{3} \phi_{2}+c_{13} \phi_{1}^{2} \phi_{2}^{2}+c_{14} \phi_{1} \phi_{2}^{3}+c_{15} \phi_{2}^{4} .
\end{aligned}
$$

Schematic structure of the standard model:

$$
\mathcal{L}_{\mathrm{SM}} \sim(\partial \phi)^{2}+\phi^{2} \partial \phi+\phi^{2}+\phi^{4}+\psi \partial \psi+\phi \psi^{2}
$$

■ $N=244$ real degrees of freedom (with RH neutrinos and Higgs).

- About 10^{7} terms in $\mathcal{L}_{\mathrm{SM}}$.
- Maximum number of determining equations: 2.5×10^{6} (but many are duplicated, and many are single term).

Apply the LPS method:

- Find all (continuous) symmetries and prove that there are no more.
- Use know values of parameters, and run them.
- Find approximate symmetries.
- Add new degrees of freedom looking for new symmetries (e.g. GUT).
- Given measurements of new particles/interactions, can they form part of a new symmetry?

Conclusions

Coordinate variation η^{μ}, field variation χ_{i}.
Master determining equation:

$$
\mathcal{L} \frac{\mathrm{d} \eta^{\mu}}{\mathrm{d} x^{\mu}}+\frac{\partial \mathcal{L}}{\partial x^{\mu}} \eta^{\mu}+\frac{\partial \mathcal{L}}{\partial \phi_{i}} \chi_{i}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}\left(\frac{\mathrm{d} \chi_{i}}{\mathrm{~d} x^{\mu}}-\frac{\partial \phi_{i}}{\partial x^{\nu}} \frac{\mathrm{d} \eta^{\nu}}{\mathrm{d} x^{\mu}}\right)=0
$$

The Lie point symmetry method:
■ Counterpart to the Euler-Lagrange equations.

- Finds all possible symmetries.

■ Finds all interesting relationships between parameters.
■ Works even for spontaneously broken symmetries.

- Can be automated; crucial for large systems.

Future work:

- Find all symmetries of the standard model.
- Allow for discrete symmetries [Hydon (1998)].

■ Extend to supersymmetry [Grundland, Hariton, Snobl (2008)].

References

Text book:

- Olver, Applications of Lie Groups to Differential Equations, 1986.

Reduction to standard form:

- Reid, J. Phys. A: Math. and General, 23 (1990) L853.
- Reid, Eur. J. of Appl. Math., 2 (1991) 293.
- Reid, Proc. ISSAC '92 (1992).

LPS method and computation:

- Hereman, CRC Handbook of Lie Group Analysis of Differential Equations, (1996) 367.

Previous work using LPS for field theories:
■ Hereman, Marchildon \& Grundland, Proc. XIX Intl. Colloq. Spain, (1992) 402.

- Marchildon, J. Group Theor. Phys., 3 (1995) 115.
- Marchildon, J. Nonlin. Math. Phys., 5 (1998) 68.

DPG, A systematic approach to model building, arXiv:1105.4604.

Specialise to $N=1$:

$$
-d \gamma V+\frac{\mathrm{d} V}{\mathrm{~d} \phi}(\alpha+\gamma \phi)=0
$$

Four distinct cases:
$V=0: \alpha$ and γ free. Independent shift and scale symmetries.
Rank associated with field is $R_{\chi}=(2)$.
$V=$ const: $\gamma=0$ but α is free.
Field rank $R_{\chi}=(1)$.
$V=\lambda(\phi+v)^{d}$: Solve above differential equation.
Given v, relationship between shift and scale symmetry is fixed by $v=\alpha / \gamma$.
Field rank $R_{\chi}=(1)$.
V arbitrary: $\alpha=\gamma=0$. No shift or scale symmetry.
Field rank $R_{\chi}=(0)$.

$$
-d \gamma V+\frac{\partial V}{\partial \phi_{1}}\left(\alpha_{1}+\beta \phi_{2}+\gamma \phi_{1}\right)+\frac{\partial V}{\partial \phi_{2}}\left(\alpha_{2}-\beta \phi_{1}+\gamma \phi_{2}\right)=0
$$

Go to polar field variables, $\phi_{1}=r \cos \theta, \phi_{2}=r \sin \theta$:

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} r \partial_{\mu} r+r^{2} \frac{1}{2} \partial^{\mu} \theta \partial_{\mu} \theta-V(r, \theta) .
$$

Determining equation is
$-d \gamma V+\frac{\partial V}{\partial r}\left(\alpha_{1} \cos \theta+\alpha_{2} \sin \theta+\gamma r\right)-\frac{\partial V}{\partial \theta}\left(\alpha_{1} \frac{\sin \theta}{r}-\alpha_{2} \frac{\cos \theta}{r}+\beta\right)=0$.
A solution:

$$
V(r, \theta)=\lambda\left(r^{k}-v \mathrm{e}^{l \theta}\right)^{m}
$$

k and m related by $m k=d$. Relationship between scale and rotation symmetry fixed by $k \gamma=l \beta$. Action of the symmetry is $r \rightarrow \mathrm{e}^{\gamma} r, \theta \rightarrow \theta-k \gamma / l$
 and $x^{\mu} \rightarrow \mathrm{e}^{-d \gamma / D} x^{\mu}$.

Non-linear symmetries

Field (no coordinate) symmetries of

$$
\mathcal{L}=\phi^{m}\left(\partial^{\mu} \phi \partial_{\mu} \phi\right)^{n} .
$$

m and $n \neq 0$ are constant exponents.
Determining equation

$$
m \phi^{m-1} \chi+2 n \phi^{m} \frac{\mathrm{~d} \chi}{\mathrm{~d} \phi}=0
$$

Solve for χ :

$$
\chi=a \phi^{-m / 2 n} \quad a \text { is integration constant } .
$$

Non-linear symmetry acts by $\bar{\phi}^{\prime}=a \bar{\phi}^{-m / 2 n}$, solution

$$
\phi \rightarrow\left(\phi^{p}+p a \epsilon\right)^{1 / p} \quad \text { with } \quad p=1+m / 2 n .
$$

Distinction between the symmetries of action and symmetries of corresponding equations of motion.
G a symmetry of an action $\Longrightarrow G$ also a symmetry of the Euler-Lagrange equations. Converse not necessarily true.

Denote the system by $\Delta_{j}\left(x^{\mu}, \phi_{i}, \partial \phi_{i}\right)=0$.
1 Construct the prolonged symmetry operator $\mathrm{pr}^{(k)} \boldsymbol{\alpha}$.

$$
\boldsymbol{\alpha}=\eta^{\mu} \frac{\partial}{\partial x^{\mu}}+\chi_{i} \frac{\partial}{\partial \phi_{i}} .
$$

Prolongation extends $\boldsymbol{\alpha}$ to include all possible combinations of derivatives of ϕ, to order k.
2 Apply $\mathrm{pr}^{(k)} \boldsymbol{\alpha}$ to the system: $\left.\left(\operatorname{pr}^{(k)} \boldsymbol{\alpha} \cdot \Delta\right)\right|_{\Delta=0}=0$.
3 Equate all independent coefficients to zero \rightarrow determining equations.

Equations of motion example

System defined by Euler-Lagrange equation $\ddot{\phi}-\phi^{\prime \prime}+m^{2} \phi=0$.
What are its symmetries?

- $m=0$ has

$$
\begin{aligned}
\eta^{t}(t, x) & =F_{+}(t+x)+F_{-}(t-x) \\
\eta^{x}(t, x) & =F_{+}(t+x)-F_{-}(t-x)+f, \\
\chi(t, x, \phi) & =G_{+}(t+x)+G_{-}(t-x)+g \phi(t, x) .
\end{aligned}
$$

- $m \neq 0$ has

$$
\begin{aligned}
\eta^{t}(x) & =a^{t}+b x \\
\eta^{x}(t) & =a^{x}+b t, \\
\chi(t, x, \phi) & =\int_{-\infty}^{+\infty} d k\left[H_{+}(k) \mathrm{e}^{i(\omega t+k x)}+H_{-}(k) \mathrm{e}^{i(\omega t-k x)}\right]+g \phi(t, x),
\end{aligned}
$$

$$
\text { where } \omega=\sqrt{k^{2}+m^{2}} .
$$

$N=244$ real degrees of freedom (with RH neutrinos):
\square gauge $=4$ real components $\times(1$ hyp +3 weak +8 strong $)=48$,
■ leptons $=8$ real components $\times 3$ gens $\times(\nu+\mathrm{e})=48$,

- quarks $=8$ real components $\times 3$ gens $\times 3$ cols $\times(u+d)=144$,

■ and Higgs $=2$ real components \times weak-doublet $=4$.

